easyDSP help

easyDSP help

Table of Contents

N o U A D=

CASY D S P 2 i e 4
PrOdUCES LY P ottt e 5
SEArtiNG EaSY DS P it e 8
VA TS] [o] I o 1153 e] Y/ 9
LimiEatioN ..o e 16
Pod configuration ..o 18
HOW t0 USE MCU ...ttt st s s srn e 21
0 T O < 21
7.1.1 C28X Programming ...cccueeeeessiiiiinneeessieaninneeessseaainneeeesss 21
7.1.2 C28x board settingcccviiiiiii i 38
7.1.3 How to use other SCI port than designated 49
7.1.4 C28X CAULIONSvii it s e e 51

7.2 ST 32 i e e 51
7.2.1 STM32 programiming ooeeeeeiieeiiiiiiisisissssesessesseesseeseeeeeeeens 51
7.2.2 STM32 hardWarec.ooieiiiiiie e e e e aneas 59
7.2.3 STM32 dual COre .. i e e 62
7.2.4 STM32 RAM bOOtiNg .. e 68
7.2.5 STM32 CAULIONS .uvviiiiiiiii i e e 71

0GB PP 72
7.3.1 S32K1 4 SDK ettt 72
7.3.2 S32K/S32M 4 RTD .ottt st ee e 79

A AN N 174 < G) 95
7.4.1 AM263X SOftWAIe ..uviiiii i e 95
7.4.2 AM263X hardwareccviiiiiiiii e 105

7.5 TMAC e e 108
7.6 MSPMO ... e e 112
7.7 PSOCA et 119
7.7.1 PSOC4 SOftWaAre. ..o e e 119
7.7.2 PSOC4 hardwareooiiiiiiiiiii i 130

228 < 204 1 L PP 130

easyDSP help

7.9 XM i e 132
710 RA e 135
7.10.1 RA hardWare€......oviviiiiiiiiiiii i 135
7.10.2 RA SOfrWar€ .. vt e 136
7.10.3 RAD o e 143

5 T T 146
7.11.1 RX hardWare......ovviiiiiiiiiiii s e 146
7.11.2 RX SOffWar€...ouiiiiiiiiiii e 147

72 2 10 156
7 L3 T XS e 160
2 T 162
7.15 CauUtioNS .uviiiiiiii i 164
B MBNUS ettt 165
0 R o o) T o 165
8.2 Edit. e e 169
B3 MCU i e 169
8.3.1 COMMON .ttt e 169
83,2 L2 X tuuiiiiii i e 171
8.3.3 STM B . i 177
.34 S i e 179
8.3.5 AM 23X 1ttt 182
.36 TMAC i e 184
8.3.7 MSPMO ..ttt 185
8.3.8 PSOCA .. it 187
8.3.9 XM i e 188
8.3.10 XMC ..t 189
8.3, 1 RA e 190
8.3, 12 RX it 192
8.3, 13 TX, TXZ i e 194
B.3.14 LPC o 196

S 2 S I Yo Y £ 197
8.5 WINAOW .uiviiiiiii 198

easyDSP help

S T ST 11 o 198
S TRV T e (o 1 199
9.1 COMMANA 1.ttt e e 199
0.2 Watlh e e 201
1S 2 T = [) o PP 203
9.4 CNar . e 207
1S TR =T ol oo [P 208
1S N I 17 =T o] VA 210
1S T AN o =)V 211
S TR TR I =T 212
10. Trouble ShOOting ...cvei i e 212
0 0 5 5 o 5 2T 212
10,2 C28X tutiteineite ettt a et 214
10,3 ST M3 ettt 219
3 T 221
3 R I 7 N (] 1Y =] 221
11,2 OtNEIS ot 223
1 G T 1Y PP 223
A I YT 224
12.1 Driver Installation ..o 224
12.2 Driver Uninstallation..........cooviiiiiii e 225

easyDSP help

1. easyDSP ?

Welcome to

easyD SP

for DSP developer, by DSP developer

Welcome to easyDSP for real-time MCU debugging

‘easyDSP' is a powerful graphical user interface (GUI) for the maintaining, configuring and trouble-
shooting of embedded software with strict real-time requirements. The tool automatically extracts the
symbol information from the files generated by the cross-compiler and presents the user with windows
for the viewing, editing, logging and graphing of those symbols, in real-time, while the target software
is executing. easyDSP communicates with the target MCU over a serial communication link, typically
SCI (or USART). On the target, only a small "remote agent" needs to be called periodically in the
background task. Since the remote agent runs on spare processor cycles, it does not interfere with the
interrupt driven part of the software. This makes the tool ideal for interfacing with power electronics
control software, where the control tasks need to be executed uninterruptedly and with minimal
latency. The fact that easyDSP does not depend on JTAG/SWD for communicating with the target
makes the tool operate reliably in environments with strong EMI and/or high-voltage isolation
requirements. easyDSP can supports multiple operation so that you can control several MCU boards by
using several easyDSPs in single PC.

easyDSP is designed for the real-time communication between MCU and an IBM PC or compatible
running 64bits Windows .
Supporting MCU :

- TI : C28x, TM4C, MSPMO and AM263x series

- ST : STM32 series

- Infineon : PSoC4, XCM1 and XMC4 seriels

- Renesas : RA, RX series

- Toshiba : TX and TXZ3 series

- NXP : LPC1x00, S32K, S32M series

The detailed information is available here . For the support of other MCU, please contact
easydsp@gmail.com.

Customers are
universities in Korea (Seoul National, HanYang, SungKyunKwan, Kangwon, Busan, KAIST, ...),
companies in Korea (Samsung, LG, Hyundai, LS, Onsemi, Infineon, ...),
company outside Korea (Yaskawa, Raytheon Technologies, Collins Aerospace, Carrier, General
Motors , Delphi, Grid-bridge, R&D Dynamics, ADI American Distributors Ltd ...)
university outside Korea (FEEC@ECE, Virginia Tech)

4

easyDSP%20product%20portfolio_eng.htm

easyDSP help

easyDSP is not freeware. But it is provided "AS IS" without warranty of any kind, either expressed or
implied, including but not limited to the implied warranties of merchantability and fitness for a
particular purpose. In no event shall easyDSP be liable for any damages whatsoever including direct,
indirect, incidental, consequential, loss of business profits or special damages, even if easyDSP has
been advised of the possibility of such damages. It is the user’s responsibility to check for future
updates to the easyDSP and to use the latest version.

For more information, visit www.easydsp.com or
mail to easydsp@gmail.com for program bug, improvement idea, and other technical inquiry,

hr.oh@egreenpower.com for purchsing, AS, easyDSP Pod hardware inquiry.

Thank you.

Acknowledgment :

This software is based in part on the work of the Independent JPEG Group.

This software is based in part on the work of the FreeType Team.

This software is based on pugixml library (http://pugixml.org). pugixml is Copyright (C) 2006-2018
Arseny Kapoulkine.

2. Products type

type 1 type 2 type 3

In below, you need to purchase easyDSP type by type.

Supportin LS
Type PP 9 Communication Comments
MCU
Channel
type Standard isolation type.
1 I C28x SCI Digital isolator is used inside easyDSP pod for isolation purpose.
Optic cable isolation type.
type TI C28x SCI Stable long-distance communication with optic cable
2 (HFBF1414Z/HFBF24122).
Cable distance : variable(upto 200m) upon request.
ST STM32
TI AM263x
TI TM4C
type TI MSPMO UUSAARI%I_TOorr Standard isolation type.
3 Infineon SCI Digital isolator is used inside easyDSP pod for isolation purpose.
PSoC4

Infienon XMC1
Infineon XMC4

http://www.easydsp.com/index_eng.html
mailto:easydsp@gmail.com
mailto:hr.oh@egreenpower.com
http://pugixml.org/

easyDSP help

Renesas RA
Renesas RX
Toshiba TX
Toshiba TXZ3
NXP LPC1x00
NXP S32

Please check the part number of MCU below.

notation :

[a,b] = aorb, x =any

MCU

part number

TI
C28x

TMS320F280[1,2,6,8,9], TMS320F2801[5,6], TMS320F28044, TMS320F281[0,1,2],
TMS320F2802[20,30,60,70], TMS320F2802[0,1,2,3,6,7,00],
TMS320F2803[0,1,2,3,4,5],TMS320F2805[0,1,2,3,4,5], TMS320F2806([2,3,4,5,6,7,8,9],TMS32
0F2807[4,5,6],

TMS320F28001[32,33,35,37], TMS320F28001[52,53,54,55,56,571,
TMS320F28002[1,2,3,4,5],TMS320F28003[3,4,6,7,8,9],TMS320F28004[0,1,5,8,9], TMS320F2
823[2,4,5],TMS320F2833[2,3,4,5],TMS320C2834[1,2,3,4,5,6], TMS320F2837[4,5,6,7,8,91S,T
MS320F2837[4,5,6,7,8,9]D, TMS320F2838[4,6,8]S, TMS320F2838[4,6,8]D,
TMS320F28P55xS[D,G,]], TMS320F28P65x[S,D][H,K]

TI AM263x

AM263[1,2,4]

TI TM4C

TM4C123[0,1,2,3][C3,D5,E6,H6], TM4C123[6,7][D5,E6,H6], TM4C123[A,B,F,G][E6,H6],
TM4C129[0,2]NC, TM4C1294[K,N]C, TM4C1297NC, TM4C1299[K,N]C, TM4C129[C,DINC,
TM4C129E[K,N]C, TM4C129LNC, TM4C129X[K,N]C

TI MSPMO

MSPMOLxxx[3,4,5,6,7], MSPMOGxxx[5,6,7]

ST
STM32

STM32C011x[4,6], STM32C031x[4,6], STM32C051x[6,8] "E* , STM32C071x[8,B],
STM32C091x[B,C] M , STM32C092x[B,C] M |

STM32F030x[4,6,8,C], STM32F031x[4,6], STM32F031x6, STM32F038x6,
STM32F042x[4,6], STM32F048x6, STM32F051x[4,6,8], STM32F058x8, STM32F070x[6,B],
STM32F071x[8,B], STM32F072x[8,B], STM32F078xB, STM32F091x[B,C], STM32F098xC,
STM32F100x[4,6,8,B,C,D,E], STM32F101x[4,6,8,B,C,D,E,F,G],

STM32F102x[4,6,8,B], STM32F103x[4,6,8,B,C,D,E,F,G], STM32F105x[8,B,C],
STM32F107x[B,C], STM32F205x[B,C,E,F,G], STM32F207x[C,E,F,G], STM32F215x[E,G],
STM32F217x[E,G],

STM32F301x[6,8], STM32F302x[6,8,B,C,D,E], STM32F303x[6,8,B,C,D,E], STM32F318x8,
STM32F328x8, STM32F334x[4,6,8], STM32F358xC, STM32F373x[8,B,C], STM32F378xC,
STM32F398xE,

STM32F401x[B,C,D,E], STM32F405x[E,G], STM32F407x[E,G],

STM32F410x[8,B], STM32F411x[C,E], STM32F412x[E,G], STM32F413x[G,H], STM32F415xG,
STM32F417x[E,G], STM32F423xH, STM32F427x[G,1], STM32F429x[E,G,I], STM32F437x[G,I],
STM32F439x[G,I], STM32F446x[C,E], STM32F469x[E,G,I], STM32F479x[G,I],
STM32F722x[C,E], STM32F723x[C,E], STM32F730x8, STM32F732xE, STM32F733xE,
STM32F745x[E,G], STM32F746x[E,G], STM32F750x8, STM32F756XG, STM32F765x[G,I],
STM32F767x[G,1], STM32F769x[G,1], STM32F77[7,8,9]xI,

STM32G030x[6,8], STM32G031x[4,6,8], STM32G041x[6,8], STM32G050x[6,8],
STM32G051x[6,8], STM32G061x[6,8], STM32G070xB, STM32G071x[8,B], STM32G081xB,
STM32GOBOXE, STM32G0B1x[B,C,E], STM32G0C1x[C,E], STM32G431x[6,8,B],
STM32G441xB, STM32G473x[B,C,E], STM32G474x[B,C,E], STM32G483xE, STM32G484xE,
STM32G491x[C,E], STM32G4A1xE,

STM32H503xB, STM32H523x[C,E], STM32H533XE,

STM32H562xG, STM32H562xI, STM32H563xG, STM32H563xI, STM32H573x]I,

6

easyDSP help

STM32H723x[E,G], STM32H725x[E,G], STM32H730xB, STM32H733xG, STM32H735x%G,
STM32H742x[G,I], STM32H743x[G,I], STM32H745x[G,I], STM32H747x[G,I], STM32H750xB,
STM32H753xI, STM32H755xI, STM32H757xI, STM32H7A3x[G,I], STM32H7B0XB,
STM32H7B3xI,

STM32L010x[4,6,8,B], STM32L011x[3,4], STM32L021x4, STM32L031x[4,6],

STM32L041x6, STM32L051x[6,8], STM32L052x[6,8], STM32L053x[6,8], STM32L06[2,3]x8,
STM32L07[1,2,3]x[8,B,Z], STM32L08[1,2]x[B,Z], STM32L083x[8,B,Z],
STM32L100x[6,8,B,C], STM32L151x[6,8,B,C,E], STM32L152x[6,8,B,C,D,E],
STM32L162x[C,D,E], STM32L100x[8,B]-A, STM32L151x[6,8,B,C]-A, STM32L152x[6,8,B,C]-A,
STM32L162xC-A, STM32L15[1,2]xD-X, STM32L162xD-X,

STM32L412x[8,B], STM32L422xB, STM32L431x[B,C], STM32L432x[B,C], STM32L433x[B,C],
STM32L442xC, STM32L443xC, STM32L451x[C,E], STM32L452x[C,E], STM32L462xE,
STM32L471x[E,G], STM32L475x[C,E,G],

STM32L476x[C,E,G], STM32L486xG, STM32L496AE, STM32L496x[E,G],

STM32L4A6xG, STM32L4P5x[E,G], STM32L4Q5xG, STM32L4R5x[G,I], STM32L4R7xI,
STM32L4R9xX[G,I], STM32L4S[5,7,9]xI,

STM32L552x[C,E], STM32L562xE,

STM32U031x[4,6,8], STM32U073x[8,C], STM32U083xC,

STM32U375x[E,G] "B, STM32U385xG " |

STM32U535x[B,C,E], STM32U545%E, STM32U575x[G,1], STM32U585xI,

STM32U575x[G,I], STM32U585xI, STM32U595x[I,]], STM32U599x[I,]], STM32U5A5X][1,J],
STM32U5A9x], STM32U5F[7,9]xJ, STM32U5G[7,9]xJ,

STM32WB[10,15]xC, STM32WB30xE, STM32WB35x[C,E], STM32WB50xG,
STM32WB55x[C,E,G,Y], STM32WB05xZ, STM32WB06XC, STM32WB07xC, STM32WBO09XE,
STM32WBA50xG " , STM32WBAS52x[E,G], STM32WBA5[4,5]x[E,G] ,

STM32WL33x[8,B,C], STM32WL5[4,5]xC, STM32WLE[4,5]x[8,B,C]

CY8C402[4,5], CY8C404[5,6], CY8C412[4,5],CYBC4126xxx-S42x, CYB8C4126xxx-543Xx,
CY8C4126xxx-544x, CY8C4126xxx-545x, CY8C4126xxx-Mxxx, CY8C4127xXxXX-SXXX,

Infineon [CY8C4127xxx-Mxxx, CY8C4127xxx-BLxxx, CY8C4128xxx-Sxxx, CY8C4128xxx-BLxxx,

PSoC4 CY8C414[5,6,7,8], CY8C424[4,5], CYBC4246xxx-DSxxx, CYB8C4246xxx-Mxxx, CY8C4246xxx-
Lxxx, CY8C4247xxx-Mxxx, CY8C4247xxx-Lxxx, CY8C4247xxx-BLxxx, CY8C4248xxx-Lxxx,
CY8C4248xxx-BLxxx, CY8C454[6,7,8], CYBC472[4,5], CY8C474[4,5]

Infienon [XMC1100-xxxxx0[008,016,032,064], XMC120x-xxxxx0[016,032,064,128,200],

XMC1 XMC130x-xxxxx0[016,032,064,128,200], XMC140x-xxxxx0[032,064,128,200],

Infineon XMC410x-xxxx[64,128], XMC4200-xxxx256, XMC4300-xxxxx256, XMC440x-xxxxx[256,512],

XMC4 XMC450x-xxxxx[512,768,1024], XMC4700-xxxxx[1536,2048], XMC4800-
xxxxx[1024,1536,2048]

R5F5110[1,3,4,5,H,]1], R5F5111[1,3,4,5,6,7,8,1], R5F5113[5,6,7,8], R5F5130[3,5,6,7,8],
R5F513T[3,5], R5F5140[3,5,6], R5F5230([5,6], R5F5231[5,6,7,8], R5F523E[5,6],

Renesas |R5F523T[3,5], R5F523W][7,8], R5F524T[8,A,B,C,E], R5F524U[B,C,E], R5F526T[8,9,A,B,F],

RX R5F5651[4,7,9,C,E], R5F565N[4,7,9,C,E,D,N], R5F5660[4,9], R5F566N[D,N],
R5F566T[A,E,F,K], R5F5671[9,C,E],

R5F571M[F,G,],L], R5F572M[D,N], R5F572N[D,N], R5F572T[F,K]
R7FAOE1x[5,7] ¥ R7FA2A1xB, R7FA2A2xD,
R7FA2E1x[5,7,9], R7FA2E2x[3,5,7], R7FA2E3x[5,7],
Renesas |R7FA2L1x[9,B], R7FA4E1x[B,D], R7FA4E2x9, R7FA4L1x[B,D] " A R7FA4M1AB,
RA R7FA4M2x[B,C,D], R7ZFA4M3x[D,E,F], R7FA4T1x[9,B], R7FA4W1xD, R7FA6E1x[D,F],

R7FA6E2x[9,B],R7FA6M1xD,
R7FA6M2x[D,F], R7ZFA6M3x[F,H], R7ZFA6M4x[D,E,F], R7FA6M5xX[F,G,H], R7FA6T1x[B,D], R7FA
6T2x[B,D], R7FA6T3xB, R7FA8D1x[F,H], R7FA8M1x[F,H], R7FA8T1x[F,H], R7FASE1xF,

7

easyDSP help

R7FA8SE2xF

TMPMO03[6,7]FW, TMPMO6[1,6,7,8]FW, TMPM330F[D,W,Y], TMPM332FW, TMPM333F[D,W,Y],
TMPM341F[D,Y], TMPM365FY, TMPM366FD, TMPM367FD, TMPM368FD, TMPM369FD,
TMPM370FY, TMPM372FW, TMPM373FW, TMPM374FW, TMPM375FS, TMPM376FD,

Toshiba [TMPM37AFS,TMPM380F[W,Y], TMPM381FW, TMPM383F[S,W], TMPM384FD,TMPM3UOFS,

TX and [TMPM3UGF[W,Y], TMPM3V4F[S,W], TMPM3V6FW, TMPM440F[10,E], TMPM461F[10,15],

TXZ3 TMPM462F[10,15], TMPM46BF10, TMPM3HOF[M,S], TMPM3H1F[P,S,W,U], TMPM3H2F[S,U,W],
TMPM3H3F[S,U,W], TMPM3H4F[S,U,W], TMPM3H5F[S,U,W], TMPM3H6F[S,U,W],
TMPM3HLF[D,Y,Z], TMPM3HMF[D,Y,Z], TMPM3HNF[D,Y,Z], TMPM3HPF[D,Y,Z],
TMPM3HQF[D,Y, Z]

NXP S32K11[6,8], S32K14[2,4,6,8], S32K31[0,1,2,4], S32K34[1,2,4,8], S32M24[1,2,3,4],

S32 MY |S32M27[4,6]

\XP LPC13x[1,2,3], LPC131[5,6,7], LPC134[5,6,7], LPC15x[7,8,9], LPC175[1,2,4,6,8,9],

LPCixxx |-PC176[3,4,5,6,7,8,9], LPC177[3,4,6,7,8], LPC178[5,6,7,8], LPC181[2,3,5,7],

LPC182[2,3,5,7], LPC183[3,7], LPC185[3,7], LPC18S[3,5]7

Please contact easyDSP@gmail.com for new MCU support.

3. starting easyDSP

For those who use easyDSP first time, please refer to below steps.
The details could be different by target MCU.

Step| Process Remark

hardware connection
1 | between easyDSP and

Hardware connection between MCU and easyDSP.
Please refer the help file '"How to user MCU'.

MCU
First, inlude the source file and header file for easyDSP communication
into your project. You can find these files in the 'source' folder in the
folder easyDSP is installed.
> correction of user Second, modify the #define variable in the header file according to
program your system. For some MCU, you don't need this process.

Third, include this header file in the main.c and call the function for
easyDSP communication.
Please refer to the help file 'How to user MCU".

creation of easyDSP
project

Creates easyDSP project. Refer to the help file 'Menus>Project'.

4 | MCU booting

Booting of MCU via either 'RAM booting' or 'Flash ROM' menus.
Refer to the help file 'Menus>MCU".

5 | easyDSP monitoring

Monitoring of variables of MCU program by using versatile easyDSP
windows.

mailto:easyDSP@gmail.com

easyDSP help

modification of user For debugging of your program, change your program under IDE
program

environment.

7 | MCU booting

Like step 4, boot MCU with new user program.

8 | easyDSP monitoring Like step 5.

4. Revision History

Version

ver 11.4
Apr/2025

ver 11.3
Jan/2025

MCU

Common

TI C28x

ST STM32

NXP S32K

Renesas
RA

Common

ST STM32

Revision items

- Sector selection in the flash programming dialog can be blocked by 'Freeze'
check box for some MCU series

Bug Fix : when using auto scale in Y-axis of plot window, same Y-axis range
is applied to all plot windows

- for Gen3 MCU, flash programming is supported even when the address
alignment of its section is wrong

- new style of flash dialog box for F2837xS, F2807x, F28002x, F28003xand
F28004x

Bug Fix :

- for Gen3 MCU, flash programming could fail if the section size exceeds
OxFFFF

- wrong identification of used sector in flash dialog of F28Px and F28001x

- new function to erase all the flash (Erase chip button in the flash dialog)

- new support for STM32U375x[E,G] and STM32U385xG (source file
easyStm32LL_v11.4.cis required)

- new support for STM32WBA50xG, STM32C051x[6,8], STM32C091x[B,C]
and STM32C092x[B,C]

- The error that periodic writing 32 bytes OxFF data to flash for the specific
bootloader version of STM32H72x and STM32H73x is corrected

- support for both single and dual bank for STM32L471xE, STM32L475X%[C,E],
STM32L476x[C,E] and STM32L496xE

Bug Fix :

- flash programming error for swapped dual bank of STM32U5, STM32L5,
STM32H7 and STM32G0

- compile error in the file "easyStm32LL v11.3.c" when using STM32H7 dual
core and STM32WL3x

- incorrect page address ofdual bank mode of STM32F76[5,7,9]xI and
STM32F77[7,8,9]xI

- flash programming for STM32WL33x is not working

- support new MCU S32K series : S32K11[6,8], S32K14[2,4,6,8],
S32K31[0,1,2,4], S32K34[1,2,4,8], S32M24[1,2,3,4] and S32M27[4,6]

- support R7FA4L1x[B,D] and R7FAOE1x[5,7] (source file easyRA_v11.4.cis
required)

- DWARFS5 support improvement

- support for STM32WB05xZ, STM32WB06xC, STM32WB07xC and
STM32WBO9XE (source file easyStm32LL_v11.3.c is required)

9

ver 11.2
May/2024

ver 11.1
Jan/2024

ver 11
Sep/2023

Renesas
RA

Renesas

RX

TI C28x

ST STM32

Renesas
RA

Renesas
RX

Common

ST STM32

Renesas
RA

Renesas
RX

NXP
LPC1xxx

TI AM2x

TI C28x

easyDSP help

- support for STM32H523x[C,E], STM32H533xE and STM32C071x[8,B]
Bug Fix : STM32WBO09XxE is not supported

- support for R7ZFABE1xF and R7FASE2xF

Bug Fix :monitoring failure of 8 bytes variable and pointer variable (bug
from ver 11.1)

- TMS320F28P55xS series support (source file easy28x_bitfield_v11.2.cis
required)
Bug Fix : flash programming error for bank 4 of TMS320F28P65xDH

- STM32UQ0 series support (source file easyStm32LL_v11.2.c is required)

- support for STM32U5A5xI,STM32U5F7xJ, STM32U5F9xJ, STM32U5G7xJ and
STM32U5G9x]

- support for STM32WBO09XE, STM32WBA54x[E,G], STM32WBA55x[E,G] and
STM32WL33x[8,B,C]

- RA2A2, RA8T1 MCU series support
Bug Fix : no new project created for RASD1 MCU

- RX23E-B series support

- Writing to variable is not allowed if the variable is located in the flash
Bug Fix : malfunction of plot window when 'Total plot period' is more than
71582 minutes

- STM32U535, STM32U545, STM32U595, STM32U599, STM32U5AS5 and
STM32U5A9 series are supported

- RA2E3, RA4E2, RA4T1, RA6E2, RA6T3, RA8D1 , RABM1 MCU series support
(together with easyRA_v11.1.c and easyRA_v11.1.h)

Bug Fix : flash programming not available for RA6M5 with flash area 1.5MB
or higher

- RX26T support

- support flash programming of LPC1500 series
- supportLPC1300, LPC1700 and LPC1800 (with onchip flash) series
Bug Fix : wrong address recognition of 'array of union' variable

- changes related to RAM booting and flash programming (app image file
changeable, SBL baudrate changeable, no SBL image file provided by
easyDSP)

Bug Fix : no "MulticoreImageGen.exe" file exits in the easyDSP/Util folder.
Bug from v10.8 to v11.

- Support for TMS320F28P65x (source file v11 is required)

- F2837xD, F2838xD : change of sharable memory management for CPU2
ram booting (source file v11 is required)

Bug Fix : In case TMS320F2838xD CPU1 uses DriverLib libray : CM fails to
flash boot if CPU2 is used (source file '‘easy28x_driverlib_v11.c' is required)

10

ver 10.9
Jun/2023

ver 10.8
Apr/2023

ver 10.7
Jan/2023

ver 10.6
Nov/2022

ver 10.5.1
Nov/2022

ver 10.5
Nov/2022

TI MSPMO

ST STM32

NXP
LPC1500

Common

TI C28x

ST STM32

Renesas
RX

Common

TI AM2x

TI TM4C

TI C28x

TI C28x

Common

ST STM32

easyDSP help
- Support for MSPMO series

- S upport for STM32H5 and STM32WBA series with new source file
'easyStm32LL v10.9.c'

Bug Fix : verifying flash failed for STM32H7, STM32L0, STM32L1, STM32L5
and STM32U5 in some case due to wrong flash programming

- supports NXP 1500 series (no support flash programming)

- Multi dimensional array is supported upto 10 dimension. In the previous
version, only up to 4 dimension.

- Array window : when copying the selected cells to clipboard, easyDSP first
fills the empty cells if any.

- Support for TMS320F280015x with new source files
(easy28x_bitfield_v10.8.c or easy28x_driverlib_v10.8.c)

Bug Fix : for TMS320F280013x, flash programming doesn't work out in
some case

- supports STM32C0 MCU series with new source file 'easyStm32LL v10.8.c'
- supports RX MCU series

- Watch window : variable row can be moved up and down
- Watch/Memory/Tree/Array windows : optionally highlight the changed cell
with yellow background color

- Support for AM263x
- Support for TM4C123x and TM4C129x

- Support for TMS320F280013x with new source files
(easy28x_bitfield_v10.6.c or easy28x_driverlib_v10.6.c)

- No need to run easyDSP as administrator

Bug Fix : Symbol information is not extracted in multi core MCU from CPU2
(bug for version 10.5.1 only)

Bug Fix : Flash operation is not working with error message "The variables
in flash API wrapper are not fully recognized!" (bug for version 10.3 and
higher)

- No more support for old style memory window

- Memory Window : In case &var format is used as address input, if it
is changed with code modification, the address of the window is
automatically changed after MCU booting.

Bug Fix :

- Command Window : incomplete auto variable seeking for
struc/union/bitfield variables

- Source file is updated to easyStm32LL_v10.5.c. With this,

1. STM32GO0x : In the RAM booting and Flash Programmer dialog, entering
bootloader is improved

2. STM32H7 dual core (STM32H745x, STM32H747x, STM32H755x
and STM32H757x) : Data cache usable

11

ver 10.4
May/2022

ver 10.3.1
Apr/2022

ver 10.3
Apr/2022

Toshiba
TXZ3

Common

TI C28x

Toshiba
TX

TI C28x

Common

TI C28x

easyDSP help

3. If FIFO is available to USART, you can use it to speed up easyDSP
communication

- supports Toshiba TXZ3 MCU series

Bug Fix :

- When using DWARF4 or DWARF5 debugging information format with ARM
MCU, the address and bit location of bitfield variable is not correct in certain
cases.

Bug Fix :
- For 2838x, the flash operation is not working unless all the CPU1, CPU2 and
CM are used in the project. This is the bug of v10.3 and v10.3.1 only.

- supports Toshiba TX MCU series

Bug Fix :
- For 2838x, the easyDSP project is not created/open unless all the CPU1,
CPU2 and CM are used in the project. This is the bug of v10.3 only.

- Watch window : address column includes bit information in case ofbitfield
variable (for ex, 0x1234@bit1-2)

- Chart window : 1 dimmentional array variable only. count input by user is
blocked. It's fixed to array count.

- Tree window : mouse right click toggles the display mode (decimal =>
hex-decimal => binary => decimal....)

- Memory window : versatile address input format and comment are enabled
- Faster symbol information processing

- Driver file updated to CDM212364_Setup.exe

- Display mode (hex or dec or bin) for bitfield variable is changeable

Bug Fix :

- Member of anonymous structure/union variable is not properly displayed
- Anonymous bitfield member is not properly displayed

- Bitfield member with its size more than 4 bytes is not properly displayed

- When using multiple easyDSP projects for multi core MCU such as 2837xD
and 2838xS/D, If the output file of CPU2 or CM is reloaded as requested by
CPU1, below message box is displayed.

The output file is now reloaded as requested by other
! easyD5P project!

- 32bit Windows is not supported for COFF debugging model

- Register window : no more support

- More stable operation of 'Flash API speed [bps]' function in flash dialog
(introduced from v10.1)

Bug Fix :
- For 2837xD and 2838xS/D, the error message "Can't open *.bin file!" could

12

ver 10.2
Jan/2022

ver 10.1
Nov/2021

ST STM32

Infineon
PSoC4

Infineon
XMC4

Renesas
RA

Infineon
XMC1

TI C28x

Infineon
PSoC4

Infineon
XMC4

Common

TI C28x

easyDSP help

show up when the output file of CPU2 or CM is updated after entering to flash
dialog.

- For 2837xD and 2838xS/D, the old out file of CPU2 and CM could be used
for RAM booting or flash writing if there is no easyDSP project is open for
CPU2 and CM.

- For 2837xD with coff debugging model, CPU2 program is not updated in the
flash dialog

- easyDSP uses the hex file IDE created when ram booing and flash
programming. please make IDE create hex file in every compiling time. Note
that the other option available in the previous easyDSP which easyDSP itself
makes hex file is not available now !

Bug Fix :Flash is programmed with the latest user program regardless of
your choice if you use the hex file IDE created

Bug Fix : Flash is programmed with the latest user program regardless of
your choice

Bug Fix : Flash is programmed with the latest user program regardless of
your choice

First release for Renesas RA MCU series

First release for Infineon XMC1 MCU series (only for monitoring. flash
programming not supported)

Bug Fix : F2837xS : flash dialog box not open (bug of v10.1)

First release for Infineon PSoC4 MCU series (RAM booting not supported)

First release for Infineon XMC4 MCU series (RAM booting not supported)

- New style memory window (check futher)

Bug Fix :

- Character value (ex, 'A') can be assigned to non character type variable

- In array window, character value (ex, 'A") can't be assigned to character
type variable

- floating value can be assgined to pointer variable to float or double or long
double

- F28003x : newly supported

(must use the latest easyDSP source file version 10.1, CCSv11 and
compiler version is 21.6.0.LTS)
- F2802x, F2802x0, F2803x, F2805x, F2806x, F2807x, F2837xS, F2837xD,
F28004x, F28002x, F2838xD and F2838xS : flash operation speed up (max.
twice)

ey 115200 j' Please choose bps to speed up. Note some

bps could be not working.
- F2807x/F2837xS/F2837xD : supporting internal clock source
- F2802x Rev.0 : No more support

13

ver 10
May/2021

ver 9.5
Dec/2020

ST STM32

Common

TI C28x

ST STM32

TI C28x

easyDSP help

- F2838xS/D CM : 'Enables fast verifying' checkbox in RAM booting dialog is
now disabled.

- Multi core F2837xD and F2838xS/D MCU : When RAM booting or flash
programing in easyDSP project for CPU1, the communication is paused in the
easyDSP project for CPU2 and CM if the projects are open in the same PC.

- new easyDSP DriverLib source file (easy28x_driverlib_v10.1.c) : supports
F28003x, new pin mux naming of C2000Ware_4_00_00_00 and 32bit
address support for Gen3 MCU

- new easyDSP DriverLib source file (easy28x_cm_driverlib_v10.1.c) :
enabled access to EtherCAT RAM area and ECC, address alignement and
range check to prevent Hard Fault

- new easyDSP BitField source file (easy28x_bitfield_v10.1.c) : supports
F28003x and 32bit address support for Gen3 MCU

Bug Fix :

- struct/union variable recognition error (bug in v10)

- system error happens when accessing TI OTP memory area in Memory
window

- F2838xS/D CM : failed in verifying RAM booting in some cases

- No more support for HAL based easyDSP source file (due to more resource
burden than LL based one)

- LL based easyDSP source file improvement (address alignment check and
others) : please use easyStm32LL_v10.1.c

- STM32WB10xC and WB15xC : new support

- STM32U5 series : new support

Bug Fix :

- used page of flash is not identified for some MCUs which has 128bytes page
size

Bugs Fixed : Invalid struct or union variable is registered in tree window

- Improved auto bauding process for F2837xS, F2837xD and F2807x
- supports class type for C++
- Improvements in flash dialog (except C2834x)

1. check if all used flash sectors are selected to be erased before
"Erase>Program..." button is clicked

2. button for all flash operation (erase to reset)

3. update output file when operations to flash is requested (such as
program, verify, select used or select not used), not when flash dialog is
open.

Bugs Fixed :

- F2837xD and F2838xS/D: Even though updated out file is declined by user
in the flashROM dialog, updated out file is programmed for CPU2 and CM

- F2837xD and F2838xS/D: If *.out file is updated after entering to flashROM
dialog or RAM booting dialog, updated out file is not programmed if easyDSP
project for CPU2 or CM is not activated.

- first release for ST STM32 series (dedicated easyDSP pod required)

- supporting FO, F1, F2, F3, F4, F7, GO, G4, H7, LO, L1, L4, L5, WB and
WL series

- No more legacy bitfield source file from easyDSP installation package

- Timing of /BOOT pin of easyDSP pod is changed

- For more stable CPU2 RAM booting of F2837xD/F2838xD, easyDSP source
file

14

ver 9.4
Oct/2020

ver 9.3
Jun/2020

ver 9.2

TI C28x

TI C28x

TI C28x

easyDSP help

(easy28x_BitField_v9.5.c/ easy28x_DriverLib_v9.5.c) is upgraded.
Please check the help file.
Note
- For RAM booting of F2837xD/F2838xD CPU2 : please use
"easy28x_driverlib_v9.5.c" and "easy28x_bitfield_v9.5.c" source files
Bug Fix :
- wrong symbol display at 0x0 address in Memory window (v9.3 and v9.4
only)
- 2807x, 2837xS, 2837xD CPU1 : incorrect reserved RAM region check for
boot-rom (v9.4 only)

- Chart window improvement : Speed up for chart window update (helpful for
big size array) by enabling 'Enable fast reading' option. More window update
frequency. Paused when communication is failed a lot.
- Speed up for verifying RAM booting. Pls enable 'Enable fast verifying'
option.
- Better autobauding of flashAPI wrapper in the flashROM dialog of 28002x,
2838x.
- speed up by skipping verifying of flashAPI wrapper booting in flashROM
dialog

(note : for 28002x, 2837x and 2838x, this function was applied from the
previous version. It is applied now to all MCUs)
- one time reading of 4 and 8 bytes variable in the bitfield based source files
(easy28_bitfield_v9.4.c and easy28_gen2_bitfield_v9.4.c)
- Change in the title of menu and its shortcut (Serial Booting, ALT+S ->
Ram Booting, ALT+R)

Note

- 2838x CM : please use "easy2838x_cm_driverlib_v9.4.c"

Bug Fix :

- Chart window : in some cases, it is not updated properly after out file
update

- Tree window : not valid variable with * operator in variable list (bug of v9.3
only)

- 2838x : When using 2838x CPU1 and CM, updated CM program is not
reflected automatically to CM project after CM program is booted in CPU1
project

- 2807x, 2837xS, 2837xD CPU1, 2837xD CPU2, 2838x CPU2 : incorrect
reserved RAM region check for boot-rom

- 2838x CM : failed address is not correct when verifying is failed

- 2838x CM : flash rom writing error when section start address is 64bit
aligned

- checking before RAM booting if user code overlaps with memory region for
boot rom and easyDSP

- New bitfield source now available for TMS320F280x, F281x and F28044

- bitfield source now available for TMS320F2838xS/D for CPU1 and CPU2

- value at address operator (*) is supported for pointer variable

Bug Fix :

- Error in flashrom operation due to skipping booting with flashAPI wrapper
- time interval not working in watch window

- F2838x CM section alignment check error in flashrom dialog

- TMS320F2838x is supported with DriverLib only
- TMS320F28002x is supported

15

Apr/2020

ver 9.1
Mar/2020

ver 9.03
Jan/2020

ver 9.02
Dec/2019

ver 9.01
Dec/2019

ver 9
Dec/2019

ver 1 to ver 9

ver. 1.0
Aug/1999

TI C28x

TI C28x

TI C28x

TI C28x

TI C28x

TI C28x

TI 3x

easyDSP help

- set Rx input pin to pullup type to increase noise immunity

- New bitfield source now available for TMS320F2802x, F2802x0, F2803x,
F2805x and F2806x

Bug Fix :

- In some cases, bin file is not created

- In some cases, dwarf version 4 is not properly supported

- Windows are not updated after 'Reload *.out' menu execution

- treat pointer to struct/uniton variable as struct/unition variable in Tree
window

- 28004x flash rom : 'select all' button not working in flash dialog window
- 28004x flash rom : not working if clock source is not external 20MHz

- DriverLib based easyDSP source files (28004x, 2807x, 2837xS and
2837xD) and example main.c

- new bitfield based easyDSP source files (28004x, 2807x, 2837xS, 2837xD,
2823x, 2833x and 2834x) and example main.c or main_gen2.c

- output file reloading menu

- supports ELF-based Embeded Application Binary Interface (EABI)

- improved flashAPI wrapper booting in flash rom dialog of 2837xD, 2837xS,
2807x and 28004x

Bug Fix :

- pointer to struct variable is registered in Tree window

- v9.03 only : error in flashAPI wrapper booting in flash rom dialog

of 2837xS, 2807x and 28004x

Bug Fix (Bugs only for ver 9.x) :
- auto bauding failure in case of 2837xS, 2837xD, 2807x and 28004x
- project is not open if project folder and folder of *.out file is different

- When creating new project, user need to set debugging model (either coff
or dwarf) of compiler in its project setting. When opening existing project
which was created before easyDSP verion 9.02, coff is selected by default.

Bug Fix :
- For some cases, easyDSP can't tell compiler option correctly.
- supports the latest TI compiler version greater than ver.15
- supports "--symdebug:dwarf" compiler option
- No more support for "--symdebug: coff"
Note that coming update could be not available for "--symdebug:coff"
- when using "--symdebug:dwarf" compiler option, display variable type with
its typedef name (ex, Uint32)
- contact easydsp@gmail.com
- First release

5. Limitation

16

mailto:easydsp@gmail.com

easyDSP help

Please kindly keep in mind some limitation when using easyDSP as belows.

Common

1. Only little endian is supproted.

2. easyDSP uses the interrupt service routine for its communication to MCU.

Therefore if the allocated resource time for the interrupt service routine for easyDSP communication is
limited due to the lack of resource, easyDSP could be not proplerly working.
3. Value at address operator (*) is supported to pointer variable to basic type only, and for C28x only. That
IS, not supported to for example, pointer to pointer, pointer to array and so on.

4. Arrow operator (->) is not supported.
5. Writing to 'bit field' type variable is not allowed.

6. Multi dimensional array is supported upto 10 dimension.

Limitation

Pleae check the limitation of easyDSP by MCU. o = supported, X = not supported.
Flash programming is not available in case the protection or security function is applied.
For details, please check the relevant menu for each MCU.

Vendor MCU Monitoring RA.M Flash Other limitations
booting | program
C28x o 0 1. no support for OTP
AM263x o} o (1) o (1) |1. limited by SBL
TI
TM4C o] X 1. no support to EEPROM
MSPMO o} X 0 (1) |1. only MAIN flash
1. No support to write to data memory, OTP
memory and option bytes.
2. No support to Trust Zone and Secure MPU
ST STM32 o] o (4) o0 (1,2) |3. Limitation from the bugs and limitations of
MCU built-in bootloader.
4. RAM booting is not supported for dual core
MCU.
1. No support for PSOC4000 MCU since UART is
not available.
PSoC4 ° X 0 (2) 2. Flash programming feasible with single-
Infienon application bootloader configuration only.
XMC1 o] X X
XMC4 o] X o]
1. For MCU with DLM, DLM state transition is
RA o x 0 (1), x |not supported.
Renesas (2) 2. f.:Iash programming is not supported for RAO
series.
RX o X 0 (1,2) |1. Protected area by area protection or trusted

17

easyDSP help

memory is not programable.

2. For RX64M, RX660, RX66T, RX71M and
RX72T series, programming of option setting
memory is not supported.

Toshiba
TXZ3 0 X 5
gg;; Y X o no support to EEPROM
NXP
LPC1x00 o X 0 no support to EEPROM

6. Pod configuration

Pin Description

The signal pins of easyDSP pod are shown below . Its pin pitch is 2.54mm.
For easyDSP connector in your board, please use either BHS-01-10P or XG4C-1031 connector.
Note the arrow mark on the connector.

h 4

OO0
@O 6O

Pod type 1 and 2 : Pod for TI C28x MCU

name Description
RX Output pin connected to RX of MCU
2 |GND Ground pin. Connected to #10 pin internally to easyDSP pod.
3 [TX Input pin connected to TX of MCU
4 VDD Voltage bias connected to VDDIO of MCU (ex : 3.3V)

Output pin with pseudo open collector.
5 |/BOOT It becomes Low when entering bootrom by resetting MCU.
Otherwise, no signal output from this pin.

6 reserved Do not connect

18

easyDSP help
7 reserved Do not connect
8 |reserved |Do not connect

Output pin with pseudo open collector.
9 /RESET It b ecomes Low when resetting MCU.
Otherwise, no signal output from this pin.

10 |GND Ground pin. Connected to #2 pin internally to easyDSP pod.

Pod type 3 : Pod for Arm Cortex series and other cores (RX)

name Description
RX Output pin connected to RX of MCU
2 |GND Ground pin. Connected to #10 pin internally to easyDSP pod.
3 [TX Input pin connected to TX of MCU
4 VDD Voltage bias connected to VDDIO of MCU (ex : 3.3V or 1.8V)

Output pin with pseudo open collector.
5 /BOOT It becomes Low when entering bootrom by resetting MCU.
Otherwise, no signal output from this pin.

6 reserved Do not connect

Output pin with pseudo open emitter.
7 BOOT It becomes high when entering bootloader by resetting MCU.
Otherwise, no signal output from this pin.

8 |reserved Do not connect

Output pin with pseudo open collector.
9 |/RESET It b ecomes Low when resetting MCU.
Otherwise, no signal output from this pin.

10 |GND Ground pin. Connected to #2 pin internally to easyDSP pod.

/BOOT, BOOT pin

These pins determines how MCU will boot after reset, either boot with flash to execute user program or
boot with bootmode to conduct RAM booting or flash programming.

These pins are not used at all (= no signal output) when MCU boot with flash.

They are active only when MCU boot with boot mode as below :

Used
MCU bqot boot pin operation

pin

19

easyDSP help

C28x

XMC4 /BOOT pin becomes low when MCU reset.
TX TXZ3|/BOOT |Around 1sec after MCU reset is released, /BOOT pin becomes open and no signal
LPC1x00 output.

S32

BOOT pin becomes high when MCU reset and keeps high during boot mode period.
STM32 |BOOT BOOT pin becomes open and no signal output when exiting boot mode (= exiting from
Ram booting or flash dialog).

AM2x BOOT pin becomes high when MCU reset.
TM4C |BOOT |Around 1sec after MCU reset is released, BOOT pin becomes open and no signal
MSPMO output.

/BOOT pin becomes low when MCU reset.

EQ /BOOT RA : /BOOT pin becomes open and no signal output when entering "Command
acceptance phase" during boot mode.
XMC1 not not used
PSOC4 | used

You can use MCU pin that connects to /BOOT or BOOT pin in your application progam if you follow
below guidline.

Please check the voltage level of the MCU pin at the beginning of your application program (input IO
mode as reset default). Once the voltage level of the pin becomes high or low depending on used boot
pin, you can set the MCU pin accordingly and start to use.

LEDs

There are two LEDs to indicate the status as below. Both LEDs should be ON during easyDSP operation

(not blinking).

'DSP' or 'MCU' LED is on : MCU controller board is now power supplied (= #4 pin is live with 3.3V)

'USB' LED is on : easyDSP pod is well connected with easyDSP PC program. It's ON when easyDSP

project is open, OFF when easyDSP project is closed.

Note) for optic cable easyDSP, DSP LED of PC side pod and USB LED for MCU side pod are not working.
no special meaning to the color of LED.

Connection to and Disconnection from PC and MCU

Don't make any physical connection or disconnection of easyDSP pod to/from PC and MCU during MCU
operation. It makes unintentional reset to MCU.

In case you can not avoid connection/disconnection during MCU operation, connect PC first then MCU,
disconnect MCU first and then PC. This will minimize the chance of unintentional reset to MCU.

Connection to PC

If possible, please connect easyDSP pod directly to PC (not via USB extension port). And please use
the new USB cable to secure its connection quality.

Specification

Items Pod type 1 : Pod Type 2 : Pod Type 3 :
TI C28x MCU TI C28x MCU Arm Cortex-M

20

easyDSP help

standard pod optic cable pod and RX
standard pod

min 3, typ 3.3, max 5

Supply voltage range to VDD V] same to left min 1.65, max 5 [V]
Recommended supply voltage to MCU VDDIO

VDD 3.3V 3.3V (ex, 3.3V or 1.8V)
Input voltage range -0.5.... VDD+0.5 [V] |same to left same to left

Supply current to VDD max 3mA max 50mA max 10mA

min. isolation voltage 2.0kVrms@1min - 2.0kVrms@1min
Operating free-air temperature |5 .. 55 [°C] same to left same to left
Starage temperature range -20 .. 65 [°C] same to left same to left
Relative humidity (non- max 90% rH same to left same to left

condensing)

Size (without cables) 82 x 56 x 21 mmA3 Sametoleftbuttwo 81 x 42.5x21

pods mm~3
Weight (without cables) 140 g 330g 62g
USB interface USB 2.0 Hi-Speed same to left same to left

7. How to use MCU

7.1 C28x
7.1.1 C28x programming

7.1.1.1 common

BitField and DriverlLib

There are two folders in the 'source/C28x" directory of installed easyDSP.
BitField
DrriverLib

'BitField' folder : Bitfield based easyDSP source files.

'DriverLib' folder : DriverLib(C28x Peripheral Driver Library) based easyDSP source files

please refer to the TI link for further understanding of BitField/DriverLib. You can use only one out of
two methods.

If you use the bitfield based functions in your project, then please use also bitfield based easyDSP
source files, or vice versa.

Also check below which method is supported for which MCU.

21

http://www.ti.com/lit/an/spraa85e/spraa85e.pdf

easyDSP help

Bitfield DriverLib

F28001x
F28002x
F28003x
F28004x
F2807x
F2837x
F2838x
F28P55x
F28P65x

C2834x
F2823x
F2833x
F281x
F280x
F28044
F2802x0
F2802x
F2803x
F2805x
F2806x

Debugging model option

easyDSP supports below two debugging model options, --symdebug:dwarf and --symdebug:coff. Note
that the latest TI C28x compiler (version 16 or above) doesn't support--symdebug:coff option.
Accordingly further support for this option will be very limited. Recommend to use --
symdebug:dwarf option from now.

~ C2000 Compiler
Processor Options
Optimization
Include Optiens
Performance Advisor
~ Advanced Options

Advanced Dahuﬁ Oetlnns

[anguage Options

Configuration: |Debug [Active]

Debugging mocel

Optimize fully in the presence of debug (DEPRECATED) (—optimize_with_debug, -mn)
[] Keep unreferenced type infe (default for elf w debug) (—symdebug:keep_all_types)

¥ Properties for Combo Control o x

type filter text Advanced Debug Options (=g -
General

v Build

~ | Manage Configurations..

Full s:mhnh: dahuﬁ (--s:mdahuﬁ:dwarf, -ﬁ) ~

< Properties for Combo Contral

type filter text

General
v Build

~ C2000 Compiler
Processor Options
Optimization
Include Options
Performance Advisor

~ Advanced Options

Advanced DEbuE OEtmns

Language Options

Advanced Debug Options

Configuration: |Debug [Active]

Debugging mocel
Optimize fully in the presence of debug (DEPRECATED) (~-optimize with_debug, -mn)
[Keep unreferenced type info (default for elf w/ debug) (--symdebug:keep_all_types)

Endianness option

~ | Manage Configurations..

Full symbolic debug (COFF, deprecated) (-symdebug:coff) ~

22

easyDSP help

Only little endian is supported by easyDSP. Please set endianness like below.

type filter text
Rescurce
General
~ Build
~ ARM Compiler
Processor Options
Optimization
Include Options
ULP Advisor
Predefined Symbols
Advanced Options
ARM Linker
ARM Hex Utility [Disabled]
Debug
Project Matures

':?:' Show advanced settings

ﬁ Properties for 2838x0_cm_DriverLib

O >
General (=T -
Configuration: | CM_RAM [Active] ~ | Manage Configurations...

[# Project =) Products

Device

Famnily: ARM

Variant: |<select or type filter text> ~ | | TM5320F28388D ~

Connection: | Texas Instruments XD5100v2 USE Debug ~ Verify... (applies to whole project)
Manage the project’s target- configuration automatically

Tool-chain

Compiler version: TIv18.123.LTS ~ More...

Output type: Executable

OQutput format: eabi (ELF) ~

Device endianness: little ~

Linker command file: 2838x_RAM_Ink_cm_easyD5SP.cmd w Browse...

Runtime support library: |<aut0matic> V| Browse...

Section alighment when using Gen3 MCU

easyDSP uses TI's flash API to access onchip flashrom. TI flash API of Gen.3 MCU (for example.
F2807x, F28001x, F28002x, F28003x, F28004x, F2837x, F2838x and F28Px) requires section
alignment on the address (min. 4 words boundary or recommended 8 words boundary) depending on
MCU. That is, the start address of the section should be either 0x*0, 0x*4, 0x*8 or 0x*C for C28x core
and either 0x*0 or 0x*8 for Arm Cortex-M4 (ex, F2838x CM). As shown below linker command file
example from TI, it is already applied as recommended value for default sections like .text but you

need to do it yourself for your own section .

23

easyDSP help
<linker command file excerpt of TMS320F28388 CPU1/CPU2>

SECTIONS
1

codestart : » BEGIN, ALIGN(S)

text : »» FLASHL | FLASH2 | FLASH3 | FLASH4, ALIGN(S)

.cinit : > FLASH4, ALIGN(8)

.switch : > FLASH1, ALIGN(S)

.reset : » RESET, TYPE = DSECT /* not used, */

.stack rox RAMML

#if defined(TI EABI_)

Linit_array : » FLASH1, ALIGN(3)

.bss : > RAMLSS

.bss:output : > RAMLS3

.bss:cio : > RAMLSS

.data : » RAMLSS

. Sy smem t » RAMLSS

'* Initalized sections go in Flash */

.const : » FLASHS, ALIGN(S)
#else

.pinit : » FLASH1, ALIGN(8)

.ebss : > RAMLSS

LESYSmEm : » RAMLSS

.cio : » RAMLSS

'* Initalized sections go in Flash */

.econst : »> FLASH4 | FLASHS, ALIGN(S)
#endif

Linker option

It is recommended the entry point is set to the 'code_start' label (in TI's
DSP28x_CodeStartBranch.asm with watch-dog disabled). This is done by linker option -e in the project
build options, that is,-ecode_start. It prevents unintentional watch dog reset during c_int00 operation
which could happen in long size program where it takes long time to initialize many variables.

7.1.1.2 multi cores

Multi core MCU
Target MCUs are F28P65xD, F2827xD, F2838xS and F2838xD.

Predefined symbols

Predefined symbols such as CPU1, CPU2, CM and _FLASH are referred in easyDSP source files when
multi-core MUC is used.
If target core is CPU2, CPU2 should be predefined. If target core is CM, CM should be predefined.

These symbols are usually predefined by CCS. But please check.

24

easyDSP help

) Properties for 2838x0_cpul_DriverLib (] e
type filter text Predefined Symbols v v §
Resource
General
w Build Configuration: | CPUI_FLASH [Active] ~ | Manage Configurations...
~ 2000 Compiler
Processer Options
Optimization —
Include Options Pre-define NAME (--define, -D) & e 385
Performance Advisor _FLASH
S —
Advanced Options
C2000 Linker
C2000 Hex Utility [Disabled]
Debug
Project Natures

Using debugger

Don't use multi-core booting related functions (easyDSP_Boot_Sync) easyDSP is providing in case you
use debugger. Debugger will load the memory of each core. please refer to #define USE_DEBUGGER of
main.c in easyDSP source file folder.

easyDSP uses MCU resource for multi core Ram booting

Some MCU resource is used by easyDSP to implement CPU2/CM ram booting. Please check below table.
You should not use these resource before CPU2/CM booting (calling of easyDSP_Boot_Sync()
function) in your code. But you can use them after the booting.

F2838xS

MCU F2837xD R, F28P65XD
IPC_FLAGO
IPC_FLAGS
Resource used by easyDSP IPC_FLAGO IPC_FLAG6 IPC_FLAGO
) , IPC_FLAG5 IPC_FLAG30 IPC_FLAGS
during ram booting CPU2 and CM IPC_FLAG31 IPC_FLAG31 CPUL1 to CPU2 MSGRAMO

CPU1 to CPU2 MSGRAM1
CPU1 to CM MSGRAM1

Flash booting location of F2838x and F28P65xD for CPU2 and CM

In the source file of easyDSP, the flash booting location is fixed :

For F2838xD CPU2 and CM, it is set to sector 0.

For F28P65xD CPU2, it is set to bank 3.

In case you like to change its location, please modify below part in easyDSP_Boot_Sync() function in
the easyDSP source file.

F2838x BitField :
ezDSP_Device_bootCPU2(BOOTMODE_BOOT_TO_FLASH_SECTORO);
ezDSP_Device_bootCM(BOOTMODE_BOOT_TO_FLASH_SECTORO0);

F2838x DriberLib :
Device_bootCPU2(BOOTMODE_BOOT_TO_FLASH_SECTORO0);
Device_bootCM(BOOTMODE_BOOT_TO_FLASH_SECTORDO);

25

easyDSP help

F28P65xD BitField : ezDSP_Device_bootCPU2(BOOTMODE_BOOT_TO_FLASH_BANK3_SECTORO);
F28P65xD DriverlLib : Device_bootCPU2(BOOTMODE_BOOT_TO_FLASH_BANK3_SECTORO);

Restriction of memory use for RAM booting of F2838x and F28P65xD

RAM booting via SCI port for CPU2 and CM of F2838x and F28P65xD is not supported by TI. easyDSP
uses workaround to boot CPU2 and CM via SCI. First, boot CPU1 via SCI with user program then boot
CPU2/CM with small agent program (not user program) via 'IPC message copy to RAM' boot mode.
Then this agent program downloads user program to CPU2 and CM via SCI. With this, there is some
restriction of memory usage to CPU2 and CM for this agent operation. Please check below table and
reflect this to command file accordingly.

Restriction of memory usage in user program Restriction of memory usage in user program
when ram booting of F2838x when ram booting of F28P65xD
cpPUl no restriction no restriction

user program

CPU2 part of M1 RAM (0x400 - 0x7F7) can't be used part of M1 RAM (0x400 - Ox5FF) can't
user program |as initialized section be used as initialized section

CM part of SO RAM (0x2000.0800 - 0x2000.0FFF)
user program [can't be used as initialized section

Change in CPU2 RAM booting of F2837xD and F2838xD from
easyDSP source file version 11 '

Before easyDSP source file version 11, for CPU2 ram booting of F2837xD and 2838xD, all the GSRAM
(Global Shared RAM) are allocated to CPU2 during CPU2 ram booting and then allocated to CPU1 after
ram booting in the easyDSP_SCIBootCPU2() function of easyDSP source file.

So, ram booting related code of CPU1 (.text section of easyDSP_SCIBootCPU2() function) should be
located to LSRAM (Local Shared RAM). And if required from CPU2 user program, CPU1 should allocate
GSRAM to CPU2 after CPU2 ram booting.

This way requires lots of restriction and caution and not any longer recommended.

In the source file version 11, GSRAM is allocated to neither CPU1 nor CPU2 in the
easyDSP_SCIBootCPU2() function.

Instead, in the CPU1 program main.c, the required GSRAM is allocated to CPU2 before calling
easyDSP_SCIBootCPU2().

With this, no more restriction and caution needed.

Booting sequence and syncronization of F2837xD and F28P65xD

The flash booting is executed in a sequence of CPU1 and then CPU2 without any synchronization
between.

The RAM booting is executed in same sequence with synchronization (i.e. the end of
easyDSP_Boot_Sync() is synchronized).

26

easyDSP help

Note that necessary memory should be allocated to CPU2 before CPU1 is calling easyDSP_Boot_Sync().

Sync between cores

Case for RAM booting

CPU1 RAM entrance to | Allocation of necessary call easyDSP_Boot_Sync()

Booting main() RAM to CPUZ (waiting for CPU2 booting)
CPUZ CPUZ Booting SIS call easyDSP_Boot_Sync()
main()
= time
Case for flash booting
flash entrance to | Allocation of necessary call easyD5SP_Boot_Sync() .
cprul Booting main() RAM and flash to CPUZ {commanding CPU2 booting) CPU1 running

entrance to call easyDSP_Boot_Sync()

main() (no action) CPU2 running

» time

CPU2 CPU2 Booting

Booting sequence and syncronization of F2838x

The flash booting is executed in a sequence of CPU1, CPU2 and CM without any synchronization
between.

The RAM booting is executed in same sequence with synchronization between (i.e. the end of
easyDSP_Boot_Sync() is synchronized).

Note that necessary memory should be allocated to CPU2 and CM before CPU1 is calling
easyDSP_Boot_Sync().

Sync between cores

Case for RAM booting
CPU1 RAM entrance to | Allocation of necessary easyDSP_Boot_Sync()
Booting main{) RAM to CPUZ {waiting for CPUZ and CM booting)
- entrance to easyDSP_Boot_Sync()
cpuz CRUAEootng main{) {waiting for CM booting)
- entrance to
CM Bootin 2 easyDSP_Boot_Sync
cM g e yDSP_Boot_Syne() time

Case for flash booting

CPU1 Flash entrance to | Allocation of necessary easyDSP_Boot_Sync()
Booting main{) RAM and flash to CPUZ (commanding CPU2 and CM booting)
- entrance to | easyDSP_Boot_Sync()
CPUZ2 CPU2 Booting e s i)
- entrance to | easyDSP_Boot_Sync()
cM EillHoctng main{)} {no action) time

F2838x CPU2 and CM clock

When CPU1 boots CPU2 and CM, CPU1 set their clock frequency to 200MHz and 125MHz respectively.
If you like to change them, you should modify the related source file by yourself.

When out file has been changed

The output file (*.out) is changed whenever the user program is compiled. When you download the
new output file by either RAM booting or flash programming in the easyDSP project connected to CPU1,
the easyDSP project connected to another cores should be updated by new output file too.

In case easyDSP for multi cores are all connected to the same PC, this process is done automatically,
meaning easyDSP project for CPU1 asks easyDSP project for CPU2 to load new output file.

In case they are open in different PC, you have to load new output file for another cores manually, by
clicking 'MCU > Reload *.out' menu.

7.1.1.3 using BitField

SCI ISR (Interrupt Service Routine)

27

easyDSP help

easyDSP uses an SCI interrupt to communicate with TMS320F28x. Therefore, the user program should
include SCI ISR (Interrupt Service Routine) code which easyDSP provides. It depends on TMS320F28x
type.

You can find these source files at the folder of easyDSP installation 'source\C28x\BitField'.

note) For F2838x CM, DriverLib based source file should be used.

C28x series SCI ISR files

F28001x
F28002x
F28003x
F28004x
F2807x
F2837x
F2838xS CPU1
F2838xD CPU1
F2838xD CPU2
F28P55x
F28P65x

easy28x_bitfield_v11.2.c
easy28x_bitfield_v11.2.h

C2834x
F2823x/2833x
F2802x/F2802x0
F2803x
F2805x
F2806x
F280x
F281x
F28044

easy28x_gen2_bitfield_v9.4.c
easy28x_gen2_bitfield_v9.4.h

Name and its role of key functions in ISR code is

easyDSP_SCI_Init() : Initializes SCI

easy_RXINT_ISR() : ISR for RX_INT

easy_TXINT_ISR() : ISR for TX_INT

easyDSP_SPI_Flashrom_Init() : for external SPI flashrom booting of C2834x
easyDSP_Boot_Sync() : multi-core MCU (F2837xD, F2838xS, F2838xD) boot and synchronization

You SHOULD change some #define variables in the header file (not source file) accordingly to your
target system.

For example, below selection is targeting for F2807x + CPUCLK 150MHz + LSPCLK = CPUCLK/4 +
easyDSP communication @ 115200 bps.

#define F28P65xS 0
#define F28P65xD_CPU1

#define F28P65xD_CPU1_CPU2 0

#define F28002x
#define F28003x
#define F28004x
#define F2807x
#define F2837xS
#define F2837xD_CPU1 0
#define F2837xD_CPU1_CPU2 0
#define F2838xS_CPU1
#define F2838xS_CPU1_CM
#define F2838xD_CPU1 0

OO0 oOoOo

o o

28

easyDSP help

#define F2838xD_CPU1_CPU2 0
#define F2838xD_CPU1_CM 0
#define F2838xD_CPU1_CPU2_CM 1

#define CPU_CLK 150000000L
#define LSP_CLK (CPU_CLK/4)
#define BAUDRATE 115200L

Please note that in case of MotorWare™, LSP_CLK should be same to CLK_CLK.
All variables in the ISR have prefix ‘ezDSP_'. Please don’t change these variables during your easyDSP
operation.

Interrupt Nesting

Interrupts are automatically disabled when an interrupt service routine begins. In other words, once
easyDSP ISR has been executed, your higher priority ISR can't be executed until easyDSP ISR has
been completed.

easyDSP source file provides buit-in interrupt nesting function assuming easyDSP SCI ISR has the
lowest priority.

For further information about interrupt nesting, please check
http://processors.wiki.ti.com/index.php/Interrupt Nesting on C28x

Run easyDP ISR fast on the flash

To run easyDSP ISR fast and stable when system is running on the flash, please use #pragma in the
top-most part of easyDSP source file. Please refer to TI application note for 'ramfuncs' or '.TI.ramfunc'
section operation.

in the part of header file easy28x bitfield.h
#if (F2823x || F2833x || C2834x)

#pragma CODE_SECTION(easy_RXINT_ISR, "ramfuncs");
#else

#pragma CODE_SECTION(easy_RXINT_ISR, ".TI.ramfunc");
#endif

NOTE) ".TIl.ramfunc" is used instead of "ramfuncs" in case the latest MCU (ex, 2837x, 2807x, 28004x)
is used with the latest TI Support Library version (and compiler). Please check the file "F28x_SysCtrl.c"
to understand which one is proper.

NOTE) Especially when your program runs on the flash and program/erase the flash at the same time
with TI flash API, ISR of easyDSP should run on the ram, not on the flash. Any ISR routines that are
executed during flash API function call must completely reside outside of the flash and must not expect
to read data from the flash.

Single core programming

easyDSP requires appropriate interrupt settings to communicate with MCU. Below box shows its
example. At first, please set up the other interrupts except SCI. Then, call easyDSP_SCI_Init(). In the
call to the functions, related registers are set up for SCI communication and interrupts. Also please
check main_gen2.c or main_gen3.c example file in the source/C28x/bitfield folder.

#include " easy28x_bitfield_v11.2.h" or
#include " easy28x_gen2_bitfield_v9.4.h" or
main(void) {

29

http://processors.wiki.ti.com/index.php/Interrupt_Nesting_on_C28x

easyDSP help

// below function should be called after other interrupts settings and before while(1)
easyDSP_SCI_Init();

while(1) {
b

C2834x programming for external SPI flash

Since 2834x doesn't have internal flash, easyDSP supports external flashs with SPI interface. They are
AT25DF021(2M bit), AT25DF041(4M bit), AT26DF081(8M bit), AT25DF321(32M bit), M25P20(2M bit),
M25P40(4M bit), M25P80(8M bit), M25P16(16M bit), M25P32(32M bit) manufactured by ATMEL or
Numonyx. SPI-A port setting is necessary for this.

Also please check main_gen2.c example file in the source/C28x/bitfield folder.

#include "easy28x_gen2_bitfield_v9.4.h "

main(void) {

// SCI port setting for easyDSP

easyDSP_SCI_Init();

//SPI-A port setting for external flash
easyDSP_SPI_Flashrom_Init();

while(1) {
b

F2837xD, F28P65xD, F2838xD multi core programming

The use of header file and easyDSP_SCI_Init() function is same to that of single core MCU.
In addtion, easyDSP_Boot_Sync() function is required to boot and synchronize CPU2 and CM.
This function should be called in all cores (CPU1, CPU2 and CM) program.

Pease check main_gen3.c example file in the source/C28x/bitfield folder.

#include "easy28x_bitfield_v11.2.h"
main(void) {

InitSysCtrl();

30

easyDSP help

/[if CPU1 program, allocate the necessary sharable memory to CPU2 and CM
/I before easyDSP_Boot_Sync() is called

/I call this after sharable memory allocation and before easyDSP_SCI_Init()
easyDSP_Boot_Sync();

easyDSP_SCI_Init();

while(1) {
}

7.1.1.4 using DriverlLib
ISR (Interrupt Service Routine) for SCI

easyDSP uses an SCI interrupt to communicate with TMS320F28x. Therefore, the user program should
include SCI ISR (Interrupt Service Routine) code which easyDSP provides.
You can find these source files at the folder of easyDSP installation 'source\C28x\DriverLib'.

C28x series SCI ISR files

F28001x
F28002x
F28003x
F28004x
F2807x
F2837x
F2838x CPU1 and CPU2
F28P55x
F28P65x

easy28x_DriverLib_v11.2.c
easy28x_DriverLib_v11.2.h

easy28x_cm_DriverLib_v10.1.c

F2838x CM easy28x_cm_DriverLib_v10.1.h

Name and its role of key functions in ISR code is

easyDSP_SCI_Init() : Initializes SCI

easyDSP_UART_Init() : Initializes UART of TMS320F2838x CM

easy_RXINT_ISR() : ISR for RX_INT

easyDSP_Boot_Sync(void) : Multi core MCU (F2837xD, F2838xS and 2838xD) booting and
synchronization

You SHOULD change some #define variables in the early part of the source accordingly to your
target system. For example, below selection is targeting for F2807x + easyDSP communication @
115200 bps.

#define F28002x
#define F28003x
#define F28004x
#define F2807x
#define F28P65xS

OpRrRr OOOo

31

easyDSP help

#define F28P65xD_CPU1 0
#define F28P65xD_CPU1_CPU2 0
#define F2837xS 0
#define F2837xD_CPU1 0
#define F2837xD_CPU1_CPU2 O
#define F2838xD_CPU1 0
#define F2838xD_CPU1_CM 0
#define BAUDRATE 115200L

Please note that DEVICE_LSPCLK_FREQ constant in device.h file should be matching to your
system since SCI baudrate setting of easyDSP is based on that.

All variables in the ISR have prefix ‘ezDSP_ ’ . Please don ' t change these variables during your
easyDSP operation.

Interrupt Nesting

Interrupts are automatically disabled when an interrupt service routine begins. In other words, once
easyDSP ISR has been executed, your higher priority ISR can't be executed until easyDSP ISR has
been completed.

easyDSP source file provides buit-in interrupt nesting function assuming easyDSP SCI ISR has the
lowest priority.

For further information about interrupt nesting, please check
http://processors.wiki.ti.com/index.php/Interrupt Nesting on C28x

Run easyDP ISR fast and stable on the flash

To run easyDSP ISR fast and stable when system is running on the flash, please use #pragma in the
easyDSP header file. Please refer to TI application note for . TI.ramfunc' section operation.

in the header file, easy28x driverlib.h
#pragma CODE_SECTION(easy_RXINT_ISR, ".Tl.ramfunc");

NOTE) Especially when your program runs on the flash and program/erase the flash at the same time
with TI flash API, ISR of easyDSP should run on the ram, not on the flash. Any ISR routines that are
executed during flash API function call must completely reside outside of the flash and must not expect
to read data from the flash.

Single core MCU programming

easyDSP requires appropriate interrupt settings to communicate with MCU. Below box shows its
example. At first, please set up the other interrupts except SCI. Then, call easyDSP_SCI_Init(). In the
call to the functions, related registers are set up for SCI communication and interrupts. Also please
check main.c example file in the source/C28x/driverlib folder.

include " easy28x_DriverLib_v11.2.h"
main(void) {
Device_init();

// below function should be called after other interrupts settings
easyDSP_SCI_Init();

while(1) {
b

32

http://processors.wiki.ti.com/index.php/Interrupt_Nesting_on_C28x

easyDSP help

Multi core programming for CPU1 and CPU2 : F28P65xD, F2837xD,
F2838xS and F2838xD

The use of header file and easyDSP_SCI_Init() function is same to that of single core MCU.
In addtion, easyDSP_Boot_Sync() function is required to boot and synchronize CPU2.
This function should be called in both CPU1 and CPU2 program. Pease check main.c example file in the

source/C28x/DriverLib folder.

#include " easy28x_DriverLib_v11.2.h"
main(void) {

Device_init();

// called after Device_init() and before easyDSP_SCI_Init()
easyDSP_Boot_Sync();

easyDSP_SCI_Init();

while(1) {
s

Multi core programming for F2838x CM

The use of header file and easyDSP_UART_Init () function is similar to that of single core MCUs.
In addtion, easyDSP_Boot_Sync() function is required to boot and synchronize CM.
Pease check main_cm.c example file in the source/C28x/DriverLib folder.

#include " easy28x_cm_DriverLib_v10.1.h"
main(void) {
CM_init();
// called after CM_init() and before easyDSP_UART_Init()
easyDSP_Boot_Sync();
easyDSP_UART_Init();

while(1) {
s

7.1.1.5 F2837xD and F28P65xD usage

How to connect easyDSP

We need two easyDSP pods and two easyDSP programs and connect them properly to each CPU1 and
CPU2 for proper communication. easyDSP program can be executed with multiple instances with its

program title like easyDSP, easyDSP(2).
Careful procedure should be taken to connect first easyDSP program (titled easyDSP) to CPU1 and

then second easyDSP program (titled easyDSP(2)) to CPU2.
33

easyDSP help

First, you connect single easyDSP pod to PC and then to SCI-A port of CPU1. Run easyDSP program
and open the project for CPU1. Then the easyDSP program and its project is connected to CPU1.
Then connect another easyDSP pod to PC and then to SCI-B port of CPU2. Run another easyDSP
program and open the project for CPU2.

NOTE) RAM booting and flash rom operation is possible for both CPU1 and CPU2 even with single
easyDSP pod and single easyDSP program. But in this case, the communication after booting with
CPU2 is not supported.

NOTE) Please use the single PC to connect easyDSP for both CPU1 and CPU2. This enables the
communication between two easyDSP programs and some mutual activities.

easyD5SP L USE o | easyD5P | .| SCI-A for
Program 1 il Port 1 hl Pod 1 il = CPU1

A

Y

dual core MCU
(CPU1 and CPU2)

easyDEP o Use .| easyDSP | SCI-B for
Program 2 il Port 2 Pod 2 CPUZ

Y
A
k.
4
Y

Project creation

easyDSP project for CPU1 requires two output files, one for CPU1 and another for CPU2. If you don't
specify the output file for CPU2, then you can not boot CPU2. And the communication with easyDSP is
fixed to CPUL.

easyDSP project for CPU2 requires the output file for CPU2 only. It should be same to the out file for
CPU2 used in the easyDSP project for CPU1.

<easyDSP program 1>
Project Settings *

l Hardware] Miscellansous]

MCU

Vendor T -
Series | TMS320F2837%D CPU1 _=| Debugging mode! (only for T1 28¢) |dwaf =
Part number | TM3320F283770 CPUIT |

Communication
Output File(s) with easyD5P

CPU1 C:tempfcpul.out vl
CPU2 C:¥temp fepu2 out E

34

easyDSP help

<easyDSP program 2>
Project Settings >

l Hardware] Miscellaneous l

MCuU
Vendor Tl -
Series | TMS320F2837%D CPU2 | Debugging model (orly for T 28¢) [dwaf =
Part number | TMS320F283770 CPLI2 |

Output File(s)

CPL2 C:Witemp Wepu2 out

0K | Cancel

RAM booting and flash programming

RAM booting, flash programming and MCU reset for CPU1 and CPU2 are done by CPU1, accordingly
done by easyDSP program connected to CPU1. The only thing that CPU2 does is verifying RAM booting
of CPU2. Please check below table for the details.

If easyDSP for CPU1 and CPU2 are connected to the single PC, easyDSP for CPU2 pauses its
communication when CPU1 is either RAM booting or flash programming.

operation easyDSP program 1 easyDSP program 2
CPU1, CPU2 RAM booting supported Not supported
Verifying CPU1, CPU2 RAM booting supported only for CPU1 supported only for CPU2
CPU1, CPU2 flashrom operation supported Not supported
CPU reset supported Not supported

7.1.1.6 F2838x usage
How to connect easyDSP

We need three easyDSP pods and three easyDSP programs and connect them properly to each CPU1,
CPU2 and CM. easyDSP program can be executed with multiple instances with its program title like
easyDSP, easyDSP(2) and easyDSP(3).
Careful procedure should be taken to connect first easyDSP program (titled easyDSP) to CPU1 and
then second easyDSP program (titled easyDSP(2)) to CPU2 and so on.
First, you connect single easyDSP pod to PC and then to SCI-A port of CPU1. Run easyDSP program
and open the project for CPU1. Then the easyDSP program and its project is connected to CPU1.
Then connect another easyDSP pod to PC and then to SCI-B port of CPU2. Run another easyDSP
program and open the project for CPU2.
Likewise, also for CM.
NOTE) RAM booting and flash rom operation is possible for CPU1, CPU2 and CM even with single
easyDSP pod and single easyDSP program connected to CPU1.

But in this case, the communication after booting with CPU2 and CM is not supported.

35

easyDSP help

NOTE) Please use the single PC to connect easyDSP for all CPU1, CPU2 and CM. This enables the
communication between easyDSP programs and some mutual activities.

TMS320F2838xD
easyDSP | use [.| easyDSP | | SCI-Afor
Program 1 [=1 Port 1 [T o Pod 1 o] PLUL
easyDsP » | use [_ | easyDsP | _ | SCI-Bfor
Program 2 - | Port 2 | o Pod 2 - o PU2
easyDSP | use [_ | easyDSP | | UART for
Program 3 - | Port 3 [o Pod 3 - ~] M

Project creation

easyDSP project for CPU1 requires max. three out files, one for CPU1, the other for CPU2 and finally
last one for CM. If you don't use CPU2 or CM, please don't specify the out file of them. The
communication with easyDSP is fixed to CPU1.

easyDSP project for CPU2 or CM requires the out file for CPU2 or CM only. It should be same out file to
ones used in the easyDSP project for CPU1.

<easyDSP program 1>
Project Settings *

| Hardware I Miscellaneous |

MCU

Vendor TI -
Series [TMS320F2838¢D CPUT hd|
Part number | TMS320F28338D CPU1 |

Communication
with easyD5SP

CPIA | F:Wtemchpulout ¥
CPU2 | C:Atemp cpu2.out -
CPU3 (CM) | C:¥temp#cpu3.out -

Output File(s)

0K | Cancel |

36

easyDSP help

<easyDSP program 2>
Project Settings >

l Hardware] Miscellaneous l

MCU
Vendor Tl -
Series | TMS320F2838xD CPL2 |
Part number | TMS320F283880 CPLI2 |
Output File(s)

CPL2 C:Witemp Wepu2 out

0K | Cancel

<easyDSP program 3>

Project Settings *
EESICI Hardware] Miscellaneous]
MCu
Vendor T -
Series | TMS320F2838¢D CM

Led L

Part number |TM532DF28383D CM

Output File(s)

CPU3 (CM) C-temp Wepud.out

QK | Cancel

RAM Booting and flash rom programming

RAM booting and flash programming for CPU1, CPU2 and CM are all done by CPU1, accordingly done by
easyDSP program connected to CPU1. The verification of RAM booting can be done by each CPU.

Please check below table for the details.

If easyDSP for CPU1, CPU2 and CM are connected to the single PC, easyDSP for CPU2 and

CM pause their communication when CPU1 is either RAM booting or flash programming.

operation easyDSP program 1 [easyDSP program 2 |easyDSP program 3
CPU1, CPU2, CM RAM booting Supported Not supported Not supported
Verifying CPU1, CPU2, CM RAM Supported only for Supported only for Supported only for
booting CPU1 CPU2 CPU2
CPU1, CPU2, CM flashrom Supported Not supported Not supported

37

easyDSP help

operation

CPU reset Supported Not supported Not supported

7.1.2 C28x board setting
7.1.2.1 F28P65x

In this page, factory default is assummed. If you change User OTP (BOOTPIN_CONFIG, BOOTDEF), you
should modify the configuration accordingly.

MCU check below two pins at the reset to decide the booting mode.

GPIO72 GP1084
Boot Mode
(Default boot mode select pin 1) (Default boot mode select pin 0)
Parallel 10 0 0
SCI / Wait Boot 0 1
CAN 1 0
Flash / USB 1 1

Since easyDSP uses two kinds boot modes, SCI boot mode (RAM boot) and flash boot mode. Below
connection is recommended between easyDSP and MCU.

vDDIO VDDIO VDDIO

g::« ?::« ?::«
easyDSF for CPU1 TMS220F 28P8 5

vDDIO -
L——j@ 2 1 P3 - SCIRXDA (GRIO13)
—a] 4 ol &= TeTeli SCITXDA (GPION2)
g9 ¢ SPT GPIOT2
w0 B T Mg—* RESET GP10E4
—= 10 g o= XRE
= HEADER 5202
easyDSP for CPU2 vES
vDDIO =
é 2.1 1 RU(CPUZ)
]’_——4@* 2 1 P e SCIRXDS (GPIOST)
—a1 4 3 P SCITXDE (GPI0a8)
H— A B C‘-.T—"(
A Y
= HEADER 522

The easyDSP connected to CPU1 should use SCI-A (GPIO13 and 12 fixed).

In case of dual cores MCU (for example, F28P65xD), 2nd easyDSP is required to connect CPU2 via SCI-
B. In the easyDSP source file (easy28x_DriverLib.c or easy28x_bitfield.c) , GPIO 86 and 87 is used for
SCI-B. If another GPIO port is required for SCI-B, please change the hardware connection and modify
the easyDSP source file (in the function of easyDSP_SCI_Init) accordingly by yourself.

For other considerations,

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- TX/RX pins are directly connected to MCU pins

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec.

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU

38

easyDSP help

- /BOOT pin is connected to GPIO72 via 2kQ series resistor

- /RESET pin is connected to reset generation circuit of MCU board (Time duration of /RESET pin is
around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 10092 series resistor inside easyDSP pod

- Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

7.1.2.2 F2838x

Defino series TMS320F2838xD check below two pins at the reset to decide the booting mode.

GPIO72 GP1084
Boot Mode
(Default boot mode select pin 1) (Default boot mode select pin 0)
Parallel 10 0 0
SCI / Wait Boot 0 1
CAN 1 0
Flash / USB 1 1

Since easyDSP uses two kinds boot modes, SCI boot mode (RAM boot) and flash boot mode. Below
connection is recommended between easyDSP and MCU.

Note 1) GPIO28/29 should be used for SCIA

Note 2) factory default is assummed. Otherwise, the user should modify the configuration
accordingly.

33V 33V
20K 20K
easyDSP for CPUA é é
3.3V TMS320F2838x
& N .1 RX
T f,; - 113 X SCIA-RX (GPI028)
2 4 3 Pi BOOT SCIA-TX (GPI029)
%82 vy GPIO72
e [, e I GP'OB"“'
10439 o p? RESET IXRS
= HEADER 5X2
easyDSP for CPU2
33 RX(CP
& , , X(CPU2)
] 251 2 13 - SCIB-RX (GPI015)
=) 4 3 pi SCIB-TX (GPI014)
*—2 § 5 p2—x
;ﬂ—.‘g{; 8 7 :}S—x
10 g =
= HEADER 5x2
easyDSP for CM
3.3V
RX(CM)
T 24 5 o UARTA-RX (GPIO85)
5] 4 3 PE UARTA-TX (GPIO84)
e 5 frs—x
w—28xd g 7 bl
10, Fhe
21 10 9 p=—x
= HEADER 5X2

You need to use three easyDSP pods to communicate with CPU1, CPU2 and CM all.
The easyDSP connected to CPU1 should use SCI-A (GPIO28 and 29 fixed).

39

easyDSP help

The easyDSP connected to CPU2 can use either SCI-B, SCI-C or SCI-D but easyDSP recommends to
use SCI-B as default in its source file.

The easyDSP connected to CM should use UART. easyDSP uses GPI084/85 in its source file.

In case you uses another GPIO pins for CPU2 and CM, the hardware connection and easyDSP source
file (easyDSP_SCI_Init function in the file of easy28x_DriverLib.c or easy28x_bitfield.c) should be
modified accordingly by yourself.

- Factory default setting is assumed (Don't change it)
- Power pin (#4) of easyDSP 5x2 header should be connected to 3.3V
- TX/RX pins are directly connected to MCU pins
- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec.
- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU
- /BOOT pin is connected to GPIO72 via 2kQ series resistor
- /RESET pin is connected to reset generation circuit of MCU board
(Time duration of /RESET pin is around 500msec)
- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 10092 series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.
Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

7.1.2.3 F2837xS/2807x

Both piccolo series TMS320F2807x and defino series TMS320F2837xS check below three pins at the
reset to decide the booting mode.

MODE GPIO72 GPIO84 | /TRST | Boot mode

Mode EMU X X 1 Emulation Boot

Mode 0O 0 0 0 Parallel I/O

Mode 1 0 1 0 SCI (RAM boot)

Mode 2 1 0 0 Wait Boot Mode

Mode 3 1 1 0 Get Mode (factory default = boot to flash)

easyDSP uses two kinds boot mode. SCI boot mode for RAM booting, GetMode boot mode for flash rom
booting.
Below connection is recommended between easyDSP and MCU.

3.3V
O : « :-.'_n
[9 2 € T SCIRXDA (GFPIOES
—= 4 3 2 = SCITXDA (GPIOS24)
Ol 5P7 GPIOT2
—= B TPFPE—X RESET
X 10 g = —= XRS
e HEADER 5X2
~ ruﬁﬁ, TRST

- 2.2k

- Factory default setting is assumed
40

easyDSP help

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V
- connect SCIRXDA = GPIO85, SCITXDA = GPIO84
- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec
- TX/RX pins are directly connected to MCU pins
- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU
- /BOOT pin is connected to GPIO72 via 2kQ series resistor
- /RESET pin is connected to reset generation circuit of MCU board
(Time duration of /RESET pin is around 500msec)
- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 10092 series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.
Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

7.1.2.4 F2837xD

Defino series TMS320F2837xD check below three pins at the reset to decide the booting mode.

MODE GPIO72 GPIO84 | /TRST | Boot mode

Mode EMU X X 1 Emulation Boot

Mode 0O 0 0 0 Parallel I/O

Mode 1 0 1 0 SCI (RAM boot)

Mode 2 1 0 0 Wait Boot Mode

Mode 3 1 1 0 Get Mode (factory default = boot to flash)

easyDSP uses two kinds boot mode. SCI boot mode for RAM booting, GetMode boot mode for flash rom
booting.

Below connection is recommended between easyDSP and MCU.

Note that GPIO84/85 should be used for SCIA. Please check 'How to use different port ?' session in
case external memory interface is necessary.

41

easyDSP help

VDDIO VDDIO WDDIO
o kel o

§ 20k § 20k § 20k

easyDSF for GPUT TMSI2F283TxD
VODID)
—59 2 1P vl SCIRYDA (GRIDES)
B 4 2[5 00T SCITXDA (GFIOE4)
* 5@ SET GFIOTZ
w E T 3'5—}{ nERE
—3 10] XRS5
= EE T
= HEADER fz -
2.7k
exsyDEP for CPUZ
VODID =
z[. 1 RE(CEUZ
[i] TRz SCIRXDE (GFICET)
——=1 4 3 pE SCITEDE (GFIGES)
o R
w E T be—
[S 0 g ::-:")
= HEADER Bz

You need to use two easyDSP pods to communicate with both CPU1 and CPU2.

one easyDSP connected to CPU1 should use SCI-A (GPI0O84/85 fixed).

The other easyDSP connected to CPU2 can use either SCI-B, SCI-C or SCI-D but easyDSP recommends
to use SCI-B GPIO 87/86 as default in its source file (easy28x_DriverLib.c or easy28x_bitfield.c) .

If another GPIO port is required in your system, please change the hardware connection and modify
the easyDSP source file (in the function of easyDSP_SCI_Init) accordingly by yourself.

- Factory default setting is assumed (Don't change it)
- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V
- TX/RX pins are directly connected to MCU pins
- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec
- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU
- /BOQT pin is connected to GPIO72 via 2kQ series resistor
- /RESET pin is connected to reset generation circuit of MCU board
(Time duration of /RESET pin is around 500msec)
- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 10092 series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.
Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

7.1.2.5 F28P55x/F28001x/28002x/28003x/28004x

Under factory default (OTP_BOOTPIN_CONFIG_KEY != 0x5A) and no emulator connected, MCU checks
below two pins at reset to determine the booting mode.

MODE GPIO24 GPIO32 Boot mode
Mode 0 0 0 Parallel I/0
Mode 1 0 1 SCI / Wait (RAM boot)

42

easyDSP help

Mode 2 1 0 CAN
Mode 3 1 1 Flash (USB)

easyDSP uses two kinds boot mode, SCI boot mode for RAM booting, Flash boot mode for flash rom
booting.

Therefore, below connection is recommended between easyDSP and MCU.

VvDDIO VDDIQ VDDIO TMS320F280015x

o o TMS320F280013x
TMS320F28002x
TMS320F28003x

; 20k ; 20k ; 20k TMS320F28004x
TMS320F28P55x

SCIRXDA (GPI028)
: BO0T SCITXDA (GPIO29)
7 GPI024
9 ¢ IRESET GPIO32

IXRS

.

VDDIO

B]

[I S |
o
—Hx
5z

L1

8
10
= HEADER 5X2

0 =] (N o —

- Factory default setting is assumed
- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V
- SCIA_RX = GPI028, SCIA_TX = GPI029

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec
- TX/RX pins are directly connected to MCU pins

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU

- /BOOT pin is connected to GP1024 via 2kQ series resistor

- /RESET pin is connected to reset generation circuit of MCU board (Time duration of /RESET pin is
around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 10092 series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

7.1.2.6 F2823x,/2833x

Boot mode of TMS320F2823x/2833x at reset is decided based on the pin status of four pins.

GPIO87 GPIO86 | GPIO85 GPIO84

MODE "ya15 xAl4 XA13 XA12 Eonlt sl
F 1 1 1 1 Jump to Flash
E 1 1 1 0 | SCI-A boot (RAM boot)

D 1 1 0 1 SPI-A boot

43

easyDSP help

I2C-A boot

eCAN-A boot

McBSP-A boot

Jump to XINTF x16

Jump to XINTF x32

Jump to OTP

Parallel GPIO I/0O boot

Parallel XINTF boot

Jump to SARAM

Branch to check boot mode

Branch to Flash, skip ADC calibration
Branch to SARAM, skip ADC calibration
Branch to SCI, skip ADC calibration

OlRr N W AR ulojN O > T O
olo oo o oloor r RrliR KR
o oolorRkrlRkr R, OOIO O K
olo|lRr|+H|O|lO|Hr|H|OO|H |~ O
oOHrlOKrHr OR O KRR O KO R O

easyDSP activates both /BOOT and /RESET pins low for RAM booting. It activates only /RESET pin low
for the menu 'DSP>Reset DSP'.

An easyDSP uses either ‘Jump to Flash’ mode or 'SCI-A boot’ by setting GPIO84 pin as 1 or 0 while
other three pins are fixed to 1. Therefore below circuit configuration is recommended.

VDDIO
§ 20k TMS320F2823x
TMS320F2833x
VDDIO
2 1 RX
27 2 1 g T SCIRXDA (GPI028)
—f 4 3 SCITXDA (GPI029)
g - . ? /BOOT
0 8 7 Pg " /RESET
+—— 10 9 IXRS
= HEADER 5X2 20k
VDDIO Ay GPIO84
AAMN GPIO85
AM GPIOSE
AMS GPIOST?
VSS
L]

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V
- TX/RX pins are directly connected to MCU pins
- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec
- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU
- /BOOQT pin is connected to either GPI0O84 or GPIOS85 via 2kQ resistor
- /RESET pin is connected to reset generation circuit of MCU board
(Time duration of /Reset pin is around 500msec)
- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 10092 series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.
Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

44

easyDSP help

7.1.2.7 C2834x

TMS320C2834x checks below four pins at the reset to decide the booting mode.

GPI087 GPIO86 GPIO85 GPIO84 .
MODE ya15 xA14 xA13 xa1z Dooting mode

E 1 1 1 0 SCI-A boot (for RAM booting)
D 1 1 0 1 SPI-A boot (for flashrom booting)

easyDSP activates both /BOOT and /RESET pins low for RAM booting. And it activates only /RESET pin
low for the menu 'DSP>Reset DSP'. So please connect easyDSP as below so that easyDSP can select
appropriate RAM booting mode (SCI-A).

Blue box of above table is the recommendation for flashrom booting. Hardware preparation is your task.

TM3IZDCTE T4

GPICZESCIRNDA
GRICZWECITIDA

RS

GPIO24
GPIO8S
GPIO2E
GPIOET

3.3V 3.3V

cs Voo
HOLD
WP SCK GRIo1E
GMD 5 GPIO1E
= 5P| Flashrom

Sl L
onicn|afea

GFIOTT
GFIO13

(SCI-A boot @ RAM booting. SPI-A boot @ flashrom booting)

And please note belows.
- SPI-A is used for easyDSP. You can't use SPI-A for your purpose.
- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V
- TX/RX pins are directly connected to MCU pins
- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec
- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU
- /BOQOT pin is connected via 2k series resistor
- /RESET pin is connected to reset generation circuit of MCU board
(Time duration of /RESET pin is around 500msec)
- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 1002 series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.
Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

Caution I

When you select menu 'MCU'>'Reset MCU', only /RESET pin is activated low. /BOOT is still high at that
time.

Therefore don't use this menu if you are not ready to use SPI-A boot mode.

45

easyDSP help

7.1.2.8 F2802x,/2802x0/2803x/2805x/2806x

Piccolo series TMS320F2802x/2802x0/2803x/2805x/2806x checks below three pins at the reset to
decide the booting mode.

GPIO37 GPIO34
MODE TDO CMP20OUT /TRST Boot mode

Mode EMU X X 1 Emulation Boot
Mode 0 0 0 0 Parallel I/0
Mode 1 0 1 0 | SCI (RAM boot)
Mode 2 1 0 0 Wait

Mode 3 1 1 0 GetMode

easyDSP uses two kinds boot mode. SCI boot mode for RAM booting, GetMode boot mode for flashrom
booting.

In case there is no emulator connected (that is /TRST=0), fix GIOP34 to '1l' and connect /BOOT pin to
GPIO37 as shown below connection.

cf) In case there is emulator connected, boot mode is decided based on the memory value at the
specific address. Please refer to the TI manual for the details.

TMEI20F2802x
TMEI20F2802:D
TMEI20F2803x
TMEI20F2808x
TMEI20F 2808

ra

2 e ——r SCIRXDA (GFIDZE)
4 3pg T SCITXDA (GRIOZS)
& 5T
Wtz Sl —
0o 3 pd == RS
FERDER B2 2.3V

20k
GPIC3T
GPIC34

£

i

[TRET

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V
- connect SCIRXDA = GPIO28, SCITXDA = GPIO29
- TX/RX pins are directly connected to MCU pins
- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec
- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU
- /BOOT pin is connected to GPIO37 via 2kQ series resistor
- /RESET pin is connected to reset generation circuit of MCU board
(Time duration of /RESET pin is around 500msec)
- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 10012 series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.
Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

46

easyDSP help

7.1.2.9 F281x

TMS320F281x checks below four pins at the reset to decide the booting mode.

GPIOF4(SCITXDA) GPIOF12(MDXA) GPIOF3(SPISTEA) GPIOF2(SPICLK) | Boot mode

1 X X X FLASH(Ox3F7FF6)

0 1 X X SPI boot

0 0 1 1 SCI boot (SCI-A)
(RAM boot)

0 0 1 0 HO
SARAM(0x3F8000)

0 0 0 1 OTP (0x3D7800)

easyDSP uses two kinds boot mode. 'SCI' for RAM booting, 'Flash' for flashrom booting (yellow part in
above table). Therefore, fix GPIOF2, GPIOF3 and GPIOF12 to '1', '1' and '0' respectively. And connect
GPIOF4(SCITXDA) to /BOQT pin of easyDSP, as shown in below connection.

VDDID VDDIO
o L=

g 20k g 20k
TMSIZOFZETx

VDDIO -
——59 2 1 P e SCIRXDA [GFIOFE)
2 3 pE = SCITXDA (GPIOF4)
S =
q0°] & T Fg__ JRESET
— 10 55 o IXRS
= HEADER iz 20k
VDDID c—A AN, GRIOF2
L_npms, GPIOF2
" GRIDF1Z
—vss

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V
- TX/RX pins are directly connected to MCU pins
- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec
- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU
- /BOOT pin is connected to SCITXDA via 2kQ series resistor
- /RESET pin is connected to reset generation circuit of MCU board
(Time duration of /RESET pin is around 500msec)
- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 10012 series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

7.1.2.10 F280x

47

easyDSP help

TMS320F280x checks below four pins at the reset to decide the booting mode.

S sPicLka S92 Goross
SCITXB

Jump to Flash Ox3F 7FF6 1 1 1
Call SCI-A boot loader 1 1 0
(RAM boot)

Call SPI-A boot loader 1 0 1
Call I2C-A boot loader 1 0 0
Call eCAN-A boot loader 0 1 1
Jump to MO SARAM 0x00 0000 0 1 0
Jump to OPT 0 0 1
Parallel GPIO Loader 0 0 0

easyDSP uses two kinds boot mode. 'SCI-A' for RAM booting, 'Jump to Flash' for flashrom booting
(yellow part in above table). Therefore, fix GPIO18, GPIO29 to '1'. And connect GPIO34 to /BOOT pin
of easyDSP, as shown in below connection.

WDDIND WDDIo vDDIO
= = =

§ 20k § 20k § 20k
TMSIZ0F 2800

VDDIO -
—=] = 1 g — SCIRXDA (GFI0ZE)
—] & 3 s — SCITADA (GPIO2S)

So— : EE B GRIO3a
S T T P /RESET
——— 19 1o 5 KRS
= HEADER BXz 0k
WD A GFIO1E
—vss

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V
- TX/RX pins are directly connected to MCU pins
- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP
/RESET signal to MCU /XRS within 0.5sec
- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP
header so that all resistors can be connected to directly MCU
- /BOOQOT pin is connected to GPIO34 via 2kQ series resistor
- /RESET pin is connected to reset generation circuit of MCU board
(Time duration of /RESET pin is around 500msec)
- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few
kilo ohm since there is 10012 series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset
generation.

48

easyDSP help

7.1.3 How to use other SCI port than designated

If you use different ports for easyDSP than recommended in previous section, you can do monitoring
operation but can't do RAM booting and flash programming since MCU has dedicated port for its

SCI booting. In case you really need to use different port, you can try below method. Here
TMS320F28377D is taken as an example but the other MCU can be used in similar way.

How to use the other ports than GPIO85 and GPI084 with TMS320F28377D for
EMIF :

First step, SCI booting done by GPIO85/GPI084 and later monitoring done by the other GPIOs. To do
so, additional hardware is necessary to switch easyDSP connection from GPIO85/GPI084 to the other
GPIOs right after booting completion. Please refer to below circuit whereDual SPDT (NLAS4684 from
Onsemi, TS3A24159 from TI) is used. FPGA can be used too.

http://www.onsemi.com/pub link/Collateral/NLAS4684-D.PDF

http://www.ti.com/lit/ds/symlink/ts3a24159.pdf

3.3V 3.3V 3.3V

20k ; 20k 20k
easyDSP for CPUT TMSI20F283TxD
W
2z i RX
12 I SCIRXDA {GPIO85)
—&-] 4 1P mT SCITXDA (GPIO84)
g9 e 5 FT GPIOT2Z
Y e T Pg—™ pEseT '|”_’M_.-TR5T
10] 77k XRS5
= HEADER 5x2
Ut
' LI 2 |12
W 7 | Voo ﬁl-. :?f. 7] X
33y] NO' COoM2]
4| COMi INZ GPIOx
£ IN? MCZ & SCITXDA (GPIO25)
20k — NC1 GND _—_l_ SCIRXDA {GPIO28)
Duwal SPDT = ’7
easyDEP for CPUZ
3w
2 1 RXCPU2
12 I g Twcruz | SCIRXDE (GFIOET)
=9 4 3 PE—— | SCITXDB {(GPIO®g)
g9 e 5T
Y e TPy ™
10 3 P

To switch easyDSP connection, one more GPIO (here, GPIOX) is used. You can use any GPIO which you
don't use in your application. The operation mechanism as below.

- After reset, GPIOx is input pin as reset default. The pull-up resistor on GPIOx decides SPDT
connection, which makes easyDSP connected to GPIO85/84.- Once SCI booting is completed, it's
user's task to switch easyDSP connection to the other ports. You can do as below.

- Makes GPIOx as output port and set its value to low, which makes easyDSP connection to GPI028/29.

49

http://www.onsemi.com/pub_link/Collateral/NLAS4684-D.PDF
http://www.ti.com/lit/ds/symlink/ts3a24159.pdf

easyDSP help

- The above operation can be done ineasyDSP_SCI_Init() in CPUL.

- Please change original coding as recommended below.
IITTTTIIIIIII T 07070777 77777777777777777777777777777777177777777117117177711111111
// ORIGINAL CODING : SCI-A GPIO setting : SCIRXDA = GPIO 85, SCITXDA = GPIO84
IITTTTIIIIIII T 77770777 77777777777777777777777777777777177777777111171177711111111
GPIO_SetupPinMux(84, GPIO_MUX_CPU1, 5);
GPIO_SetupPinMux(85, GPIO_MUX_CPU1, 5);
GPIO SetupPinOptions(84, GPIO OUTPUT, GPIO_ASYNC);

GPIO_SetupPinOptions(85, GPIO_INPUT, GPIO_ASYNC);

EALLOW;
GpioCtrlRegs.GPCPUD.bit.GPIO85 = ©;
GpioCtrlRegs.GPCPUD.bit.GPIO84 = ©;

EDIS;

[1717717 7777717777777 7777777777777 7777777777777777777777777777777777777771777777717
// MODIFIED CODING : SCI-A GPIO setting : SCIRXDA = GPIO 28, SCITXDA = GPIO29
[1717717777 7717777777 7771777777717
GPIO_SetupPinMux(29, GPIO_MUX_CPU1, 1);

GPIO_SetupPinMux(28, GPIO_MUX_CPU1, 1);

GPIO_SetupPinOptions(29, GPIO_OUTPUT, GPIO_ASYNC);

GPIO_SetupPinOptions(28, GPIO_INPUT, GPIO_ASYNC);

EALLOW;
GpioCtrlRegs.GPCPUD.bit.GPI028 = ©;
GpioCtrlRegs.GPCPUD.bit.GPI029 = ©;

EDIS;

// easyDSP connected to GPI028/29 by using GPIO31

GPIO_SetupPinMux(31, GPIO_MUX_CPU1, 0);

GPIO_SetupPinOptions(31, GPIO OUTPUT, GPIO_PUSHPULL);

GPIO _WritePin(31, 0);
/BOOT pin of easyDSP pod has pseudo open collector type, which means it becomes low during booting
for flash programming or RAM booting but open after booting. So, no addtional measures are required

when using GPI072 as EMIF. But please note that easyDSP pod connection or disconnection during
MCU operation is not recommended since it could make a unintended noise signal to GPI072. ME

Using Get mode helps ? :

50

easyDSP help

You might think to try Get mode since you can use SCI BOOT 1 in Get Mode after changing Zx-
BOOTCTRL register. Since Zx-BOOTCTRL register is located in OTP area, you can not change its contens twice.
Also you can not use flash booting.

7.1.4 C28x cautions

* F ail to boot with big coding size ?

It could happen likely with TMS320C2834x series since its code size is normally much bigger than that
of other MCU series. Why? It's because it takes long long time to initialize variables in c_int00 routine
and therefore after some time watch-dog makes unintentional reset to MCU. To prevent watch-dog
reset during c_int00 routine operation, it is strongly recommended the entry point is set to the
'code_start' label (in TI's DSP28x_CodeStartBranch.asm) with watch-dog disabled. This is done by
linker option -e in the project build options, that is, -ecode_start.

* Operating XDS100 together with easyDSP ?

XDS100v1 (TI or 3rd parties emulator) supports multiple FTDI devices only for CCS v4. Therefore
when you use XDS100v1 with CCS v3.3, easyDSP can't be used together.

* If you use other SCI ports than easyDSP recommends to use ?

For example, easyDSP recommends to use GP1028, 29 for SCIRXDA and SCITXDA respectively when
SCI-communicating with F28335. If you use GPIO36 and GPIO35 instead, you will face the booting
failure. It's because TI does not support serial booting via these pins (GPIO36 and 35).

* What if MCU is at the reset during easyDSP communication ?

It depends. If the boot mode after the reset is flashrom booting, then the MCU will boot again with the
flashrom. If the boot mode after the reset is RAM booting, then MCU will boot with the serial data
which easyDSP send for communication. It finally causes fatal error and can damage your system.

7.2 STM32
7.2.1 STM32 programming

STEP 1 : Selection of USART channel and its configuration

It will be explained based on STM32CubeMX.

Steps STM32CubeMX

51

Select USART
channel to be
connected to
easyDSP. UART
channel is not
usable. Please
refer to 'STM32
hardware >

STEP1' in this help

file.

easyDSP help

SYS_WKUP2
RCC_0SC3Z_IN
RCC_0SC32_0UT

STM32G071RBTXx
LQFP64

)
o

UISART2 TH [STLK. TH
USART2 R [STLE Y]
LED_GRERN

In this example, USART1 is selected.

USARTI_RX
——

USARTI_TX
L

Go to the
selected USART
in the
'connectivity' tab.
Then set the
mode with
Asynchronous.

USART1 Mode and Configuration

Mode JAsynchronous v |

Hardware Flow Control (RS232) [Disable v |

[] Hardware Flow Control (R5485)

L

Iave

[¥]

elect{NSS) Management |Dlsaule |

52

Set the
communication
with 8 bits, no
parity, 1 stop
bit .

Baud rate is
selectable.

If MCU supports
FIFO with 8
levels or more in
USART, please
enable it and set
'Rxfifo Threshold'
to '1 eight full
configuration'.
Note that
easyStmLL.c
version 10.5 or
lager is
required. ME5

easyDSP help
@ DMA Settings @ GPIO Settings

L] F’aramPtPr Settings @ User Constants

Configure the below parameters :

Q | @ © (]
~ Basic Parameters
Baud Rate 115200 Bits/s l
Word Length 8 Bits (including Parity)
Farity Mone
Stop Bits 1
~ Advanced Parameters
Data Direction Receive and Transmit
Cwer Sampling 16 Samples
Single Sample Disable
ClockPrescaler 1
Fifo Mode Enable

1 eighth full configuration
1 eighth full configuration

Txfifo Threshold
Rxfifo Threshold

Enable interrupt

Reset Configuration

& MNYVIC SPHIHQS

Erabied
3

NVIC Interrupt Table
USART1 global interrupt FUSARTY wake-up interrupt through EXTI line 25

Go to 'system Core
> NVIC' tab and
set the priority of
USART interrupt
lowest. That is, the
highest number of
priority.

Sort by Premption Prionty and Sub Priority

Search @ (& [Show only enabled interrupts B4 Force DMA channels Interrupts
y pt pt

NVIC Interrupt Table Enabled Preemption Priority

Mon maskable interrupt
Hard fault interrupt
System semwvice call via SWI instruction

Pendable request for system senice
Time base: System tick timer
USART1 global interrupt / USART1 wake-up interrupt through EXTI line 25 |

< |J< J< <M< J<]

Go to ' System
Core > GPIO >
USART' tab, set the
GPIO pin status
with Pull-up.

© USART

Search Signals

Pin... | Signal on Pin [GPIO output... GPIO mode GPIO Pull-up/Pull-down m Modified

[Show only Modifizd Pins

PA2 USARTZ_TX Low Alternate Function Push Pull Pull-up n/a USARTZ_.
PA3 USART2_RX Low Alternate Function Push Pull Pull-up Low nia USART2_
PAS USART1_TX n/a Alternate Function Push Pull | Pull-up Low Disable
PA10 USART1_RX nfa Alternate Function Push Pull | Pull-up Low Disable

53

easyDSP help

Go to 'Project -Driver Selector
Manager > -
Advanced Settings |
> Driver Selector' GFIO HAL
tab and choose RCC HAL
LL . easyDSP v USART
USART2 HAL
supports only LL
LSARTH
based source file.

STEP 2 : USART interrupt service routine based on LL

Thanks to smaller resource consumption than HAL, Only LL based easyDSP communication is
supported.

For easyDSP to communicate with MCU via USART, source file for USART ISR (Interrupt Service
Routine) should be included in your project.

Below is the source code based on LL and it's located in the folder 'Source > STM32' in the installed
easyDSP.

easyStm32LL_vl1l.4.c

easyStm32LL _v11.4.h

Please check below step by step procedure to modify your application code.
For the additional settings for dual core MCU, please refer to this page.

steps source code example

Sl rirririrriiiiiiiiiiiiiirriirrrrys
/f SBelect target MCU series

/{ Define 1 to target MCU. 0 to all others.
NN NNy ri

fdefine STMIZCOXX
fdefine STMIZFOXNY
fdefine STMIZFINX
fdefine STM3Z2F2XH
fdefine STMIZF3IXX
fdefine STMIZF4XY
fdefine STMIZFTHX
fdefine STM3IZ2G0XNXH
fdefine STM3IZG4XX
fdefine STM3IZHSXY
fdefine STMIZHTHX
fdefine STM3IZ2LOXXH
fdefine STMIZLIXY
fdefine STMIZL4ANYK
fdefine STMIZLSHX
fdefine STM32USKH
fdefine STMIZWBXX
fdefine STMIZWBAXY
fdefine STMIZWLHX

=

-

R | -

R | -

Define target MCU as 1 in
the easyStm32LL.h file.
No change to
easyStm32LL.c file.

[

-

I v [v [o Y v A v N v [o | -

In this example, target MCU is STM32G0xx.

54

easyDSP help

/#* USER CODE BEGIN Includes */
#include "easvStm3ZLL vx.v.h" S %y = wersion X.y
f# USER CODE END Includes */
int main{void})
{
In the beginning of
main.c, include
easyStm32LL_vx.y.h
where x.y is version.
After calling M¥ USART1 UART Init():
MX_USARTx_UART_Init(),
call
easyDSP_init(USARTZz)
7z = selected USART /* USER :_:CI_:-E BEGIN 2 */
channel. In this example £2syDoE nit (USARTL)S
USARTI is used. /#* USER CODE END 2 */
while (1)
{
1
1
/#* USER CODE BEGIN Includes
#include "easyStm3ZLL vx.v.h" b4 = version x.vy
In the beginning of /* USER CODE END Includes
stm32xxx_.it.c file where
ISR is defined, include void USART]1 IRQHandler (void)
easyStm32LL.h. {
* USER CODE BEGIN USART1 IRQn 0O *
ez USARTx IRQHandler():
/* USER CODE END USART1 IRQm 0O *
call /* USER CODE BEGIN USART1 IRQn 1 *
ez_USARTx_IRQHandler()
in the selected USART /* USER CODE END USART1 IRQn 1 */
IRQ handler function. }
In this example, the ISR file is stm32g0xx_it.c.

STEP 3 : Dual core

The code of each CPU should be located in the different page of flash.
STEP 4 : IDE setting

1. Hex file (intel format) is used for ram booting and flash programming. So it should exist and be
created in every compiling time in the same folder to output file (ex *.elf) with same file name. The
hex file extension could be either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex'
exists and use it for flash programming and ram booting. If the hex file with extension 'hex' doesn't
exist, easyDSP uses the hex file with extension 'ihex'. Please set your IDE to create hex file in every
compilation accordingly.

Example of STM32CubelDE :

55

easyDSP help

Qo0

Settings " =

Configuration: |Debug [Active] ~ | | Manage Configurations...

& Tool Settings & Build Steps Build Artifact Binary Parsers & Error Parsers

& MCU Toolchain [] Convert to binary file {-O binary)
(2 MCU Settings [Convert to Intel Hex file (-0 ihex)
@ MCU Post build outputs [convert to Motorola 5-record file (-0 srec)

2. For easyDSP to access the variable, the debug information should be included in the output file (ex,
*.elf). And the option of assembler, compiler and linker should be set accordingly (for example, -g
option). The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded. As an example with Stm32Cubelde, uncheck the 'Discard unused sections'
box.

Example of STM32CubelDE :

& Tool Settings & Build Steps Build Artifact Binary Parsers €3 Error Parsers !
(# MCU Settings Debug level | Default (-g) v

(# MCU Post build outputs

w B8y MCU GCC Assembler
(% General
(% Debugging
(# Preprocessor
(# Include paths
(# Miscellaneous

w B3 MCU GCC Compiler
(% General

(¥ Debugging

56

easyDSP help

Settings ’ .
Configuration: | Debug [Active] * | | Manage Cenfigurations...
¥ Tool Settings & Build Steps Build Artifact Binary Parsers @ Error Parsers !

p ry
@ MCU Settings Linker Script (-T) |S{wu:urkspace_lu:uc:.-"S{PrDjName}.fSWBEGOﬁ RETX_FLL
(22 MCU Post build outputs
v B MCU GCC Assembler System calls Minimal implementation (--specs=nosys.specs)
General [] Generate map file (-WI,-Map=)
@ Debugging [] Add symbol cross reference table to map file (-W,--cref)
¥ p

(# Preprocessor
(# Include paths
(# Miscellaneous

[] Discard unused sections (-Wl,--gc-sections)
[Jverbose (-Wl,--verbose)

v 5 MCU GCC Compiler [Do not use standard start files (-nostartfiles)
@ General [Do not use default libraries (-nodefaultlibs)
@ Debugging [Mo startup or default libs (-nostdlib)

@ Preprocessor

@ Include paths

(# Optimization

@ Warnings

@ Mizcellanecus
w By MCU GCC Linker

@ General

@ Libraries

@ Mizcellanecus

57

Example of KEIL uVision :

easyDSP help

Select

Folder for Objects. ..

Options for Target 'G071 HAL KEIL'

| Mame of Executable: IG{m HAL KEIL

Device I Target Output | Listing I User I C;"CHI Asm I Linker I Debug I Ltilities I

[v Debug Information
[Create HEX File

[~ Browse Information

{* Create Executable: G071 HAL KEILWGOT1 HAL KEIL

" Create Library: G071 HAL KEILWGO71 HAL KEIL lib

[” Create Batch File

Options for Target 'GO71 HAL KEIL'

Device | Tanget | Output I Listing I |ser | CI’CH—I Asm

[Use Memory Layout from Target Dialog

[~ Make RW Sections Posttion Independent
[~ Make RO Sections Position Independent
[Dont Search Standard Libraries

¥ Report might fail’ Conditions as Emors

Linker | Debug | Lkilities |

Scatter - ;
e | Y =
e
controls
Linker |-cpu Cortex-M0+ “0 -
contral |ibrary_type=microlib —strict —scatter "G071 HAL KEILWG071 HAL KEIL sct”
string W

Example of IAR Embedded Workbench :

Category:

Assembler

Linker
Debugger
Simulataor

General Options
Static Analysis
Runtime Checking

C/C++ Compiler

Qutput Converter
Custom Build
Build Actions

[] Multi-file Compilation

Digoard Unuzed Publics

Factom Settings

List Preprocessar Diagnostics MISBAALC: 2004
MISRALC: 1598 Encodings Extra Options
Language 1 Language 2 Code Optimizations Output

Generate debug information

Code section name:

| tet

58

easyDSP help

Categony: Factomy Settings

General Options

Static Analysis

Runtime Chedking
C/C++ Compiler Hdefine Diagnostics Checksum Encodings Extra Options
Assembler Corfig Library Input Optimizations Advanced Output List
Qutput Converter
Custom Build Output filename:
Build Actions |GI}?1 HAL IAR out

Debugger Include debug information in output

Simulator

7.2.2 STM32 hardware

STEP 1 : Selection of USART channel and its pins for boot mode
operation

easyDSP uses USART communication to interface with MCU and also for flash programming under
bootloader. So, first step should be choosing proper USART channel and its pins.

Please check ST's application note (AN2606 : STM32 microcontroller system memory boot mode) and
choose USART channel and its pins on your needs. UART channel is not usable.

(Note : as of Apr 2025, no information about STM32WL3x in the AN2606. Please use USART1 Rx
(PA15) and USART1 Tx (PA1) for QFN48 package or USART1 Rx (PB14) and USART1 Tx (PA1) for
QFN32 package)

Note that USART channel should be supported by bootloader. For example, in case of STM32F413x,
check the table below.

AN260G STM32F413xx/423xx devices bootloader

Table 67. STM32F413xx/423xx configuration in system memory boot mode (continued)

Bootloader Feature/Peripheral State Comment
Onece initialized the USART1
USART1 Enabled configuration is: 8-bit, ewen parity and
1 Stop bit
LSART1 boatioadsr USART1_RX pin Ingut P&.10 pin: USART in reception mods
- :) PAS pin: USART1 in transmission
USART1_TX pin Ouiput o
Onece initialized the USART2
USARTZ Enabled configuration is: 8-bit, even parnty and
1 Stop bit
SART2 boatioadsr USARTZ_RX pin Input PO pin: USARTZ in reception mode
= .) PDS pim: USARTZ in transmission
USARTZ_TX pin Owtput e
Once initialized the USARTS
USART3 Enabled configuration is: 8-bit, even parnty and
1 Stop bit
IJSARTS boatioadsr USART3_RX pin Input FE11 pin: USART3 in reception mode
USART3_TX pin Output PE1lip|n: USART3 in transmission

If you choose USART2, then you should usePD5 and PD6 pin.

59

https://www.st.com/content/ccc/resource/technical/document/application_note/b9/9b/16/3a/12/1e/40/0c/CD00167594.pdf/files/CD00167594.pdf/jcr:content/translations/en.CD00167594.pdf

easyDSP help
Accrodingly set the PD5 and PD6 as USART2 in the STM32CubeMX.

& &
o o

Caution-1 : Below MCU-USART-Pin combination is not recommended due to its restriction.

MCU USART Pin Limitation
SWD not available during bootloader
STM32F03xx4/6 | USARTL Eﬁ}g operation because PA14(SW_CLK) is
used by bootloader.
STM32F030xC
STM32F05xxx
STM32F030x8
STM32F04xxx SWD not available during bootloader
STM32F070x6 USART2 PA14 operation because PA14(SW_CLK) is
STM32F070xB PALS used by bootloader.
STM32F071xx
STM32F072xx
STM32F09xxx

Caution 2 : Due to bugs in the bootloader (esp. with old version), please don't use below MUC-BL ID-
USART combinations.

Please check AN2606 for its details.

Please note that the other combination than this could be not working due to undocumented

bugs.

MCU BL ID USART
STM32F105xx/107xx V2.0 (0x20) USART1,USART2
STM32F412xx V9.0 (0x90) USART3
STM32G05xxx/061xx V5.0 (0x50) USART2
STM32H74xxx V13.2 (0xD2) USART2
STM32H75xxX
STM32L552xx V13.0 (0xDO0) USART3
STM32L562xx
STM32L47xxx/48xxX V9.2 (0x92) USART2
STM32L496xx/4A6xX V9.3 (0x93) USART2, USART3
STM32L4P5xx/Q5xx V9.0 (0x90) USART2, USART3
STM32L4Rxx/4Sxx V9.2 (0x92) USART2, USART3
STM32L4RxG/45xG V9.2 (0x92) all USARTx

STEP 2 : easyDSP pod connection

Connect easyDSP pod to the USARTX selected in step 1.

In case of STM32F1, STM32F4 and STM32L1, pulldown to BOOT1 pin.

easyDSP pod VDD pin is connected to MCU VDD pin.

easyDSP pod TX and RX pin is pulled up with 100k Ohm resistor inside of easyDSP pod.

60

easyDSP help

In case there is a reset IC between easyDSP /RESET and MCU NRST, it should transfer easyDSP
/RESET signal to MCU within 0.5sec.

VDD
RX
i iﬂ' 2 1 ;} e USARTx_RX
— + 3 [USARTx_TX
%—e06 S -
g e 7 Fg TS * BOOTO
——f 10 g pf—— 10K BOOT1 (STM32F1, STM32F4 and STM32L1)
= easyDSP Header % 10K
10K =
VDD —AAy NRST
Note)

STM32WBO0 and STM32WL33xx : PA10 pin is BOOTO pin.

STM32H74xxx/75xxx : don't pulldown PB15 pin.

STM32G03xx/04xxx : don't pulldown PA3 pin if the version of bootloader is either v5.1 or v5.2.
STM32C011xx : On WLCSP12, SO8N, TSSOP20 and UFQFN20 packages, USART1 PA9/PA10 IOs are
remapped on PA11/PA12.

STM32C031xx : On TSSOP20 and UFQFN28 packages, USART1 PA9/PA10 IOs are remapped on
PA11/PA12.

STEP 3 : MCU option byte

The option byte of MCU should be set properly before using easyDSP. Since easyDSP can't change it,
It's your task to change option byte by using Stm32CubeProgrammer.

For easyDSP to access the memory, no protection or security should be active such as
- RDP (Readout Protect)

- WRP (Write Protect)

- PCROP (Proprietary code read-out protection)

- Securable memory

easyDSP contols BOOTO pin to determine MCU boot mode after reset, either boot from flash
(BOOTO pin low) or boot from system memory (BOOTO pin high). Option bytes in the MCU
should be set accordingly.

Below captures from Stm32CubeProgrammer could be different slightly depending MCU type.

- BOOT_LOCK should be not used so that easyDSP can use bootloader : BOOT_LOCK = unchecked

used to force boot from user area

- Unchecked : Boot based on the pad/option bit configuration
Checked Boot forced from Main Flash memaory

Unchecked : CPU1 Ch4 Boot lock disabled
Checked CPU1 ChW4 Boot lock enabled

Unchecked : CPU2 CMO+ Boot lock disabled

- - M
sl DET e — Checked : CPU2 CMO+ Boot lock enabled

- If MCU has product state, it should be OPEN for flash programming.
Life state code.
ED : Open
17 : Provisioning
PRODUCT_STATE ED ~ 2E : Provisioned
72 Closed

61

easyDSP help

- NRST pin should be reset input pin : NSRT_MODE =1 or 3

0: Reserved
NRST MODE 2 - 1: Reset Input only: a low level on the NRST pin generates system reset, internal RESET not propagated to the NSRT pin
- 2 : GPIO: standard GPIO pad functionality, anly internal RESET possible
3 : Bidirectional reset: NRST pin configured in reset input/output mode (legacy made)

- Boot mode should be determined by BOOTO pin which is controlled by easyDSP : nBOOL_SEL =

unchecked, BOOT_SEL = checked, nBOOT1 = checked, nSWBOOTO = checked
Software BOOTO

v
nSWeeoTo L/ Unchecked : BOOTO taken from the option bit nBOOTO
Checked :BOOTO taken from PBE/BOCTO pin
WBOOTL Unchecked : Boot from Flash !f BOOTO =0, othen-.'l_se Embedded SEAM1
Checked : Boot from Flash if BOOTO = 0, otherwise system memory
7 Unchecked : BOOTO signal is defined by nBOOTO option bit
Lt U Checked : BOOTO signal is defined by BOOTO pin value

BOOT SEL] Unchecked : BOOTO signal is defined by BOOTO pin value (legacy mode)

" - T Checked :BOOTO signal is defined by nBOOTO option bit

- If different boot areas can be selected through the BOOT pin and the boot base address programmed

in the BOOT_ADDO and
BOOT_ADD1 option bytes, the BOOT_ADDO and BOOT_ADD! should be the address of flash and
system memory respectively.

For ex, in case of STM32H7A3,

Mame Value
BOOT_CM7_ADDO Value | 0xE00 Address OxE000000 Define the boot address for Cortex-M7 when BOOTO=0
BOOT_CM7_ADD1 Value Ox1ff0 Address | Ox1ff00000 Define the boot address for Cortex-M7 when BOOT0=1

in case of STM32F767

Mame Value
BOOT_ADDO Value 0OxE0 Address | 0x00200000 Define the boot address when BOOTO=0
BOOT_ADD1 Value 0Oxd0 Address | 0x00100000 Define the boot address when BOOTO=1

- In case of STM32H7 dual core MCU, both cores are boot-enabled.
Unchecked : CM4 boot disabled

Llok Checked = CMA boot enabled
v Unchecked : CM7 boot disabled
BLMY7 L Checked : CM7 boot enabled

In case of STM32WL dual core :

C20PT Unchecked : SBRV will address SRAM1 or SRAM2Z, from start address 0x2000 0000 + SERV.
Checked :SBRV will address Flash memoaory, from start address 0x0800 0000 + SBRV.

7.2.3 STM32 dual core

Target MCU

STM32H745x, STM32H747%x, STM32H755%x, STM32H757x (CPU1 = Arm Cortex-M7, CPU2 = Arm

Cortex-M4)
STM32WL55xx, STM32WL54xx (CPU1 = Arm Cortex-M4, CPU2 = Arm Cortex-M0+)

Common

62

easyDSP help

MCU cores are classified with 4 kinds in terms of easyDSP.

Yellow core : core that easyDSP pod is connected to and easyDSP communicates with
Orange core : core that easyDSP pod is not connected to but easyDSP communicates with
Blue core : core that easyDSP doesn't communicate with

Gray core : core that doesn't run

Connected to | Communicated Running

easyDSP pod | with easyD5P core
core Yes Yes Yes
core Mo Yes Yes
core Mo Mo Yes
core Mo Mo No

STM32 dual core MCU has 2 cores. Please choose core type either yellow or orange core based on your
application.

Since blue and gray core has no operation with easyDSP, no easyDSP related setting is required for
them.

In the project settings, you can designate the output file of the running cores. If two cores are running
in the user program, two output files can be specified. These output files are used when flash
programming.

Also check the core which easyDSP is communicating with (monitoring).

Below example shows the case that two cores are running (and therefore easyDSP supports flash
programming of two cores) and easyDSP is monitoring only CPU1.

Project Settings *

Basic l Hardware] Miscellaneous]

MU
Vendor ST -
Series |STM32 H7

Led L

Part number | STM32H755x

Communication
with easyDSP

CPUT (M7} C:tempepul.out v
CPL2 (M4) C:MtempcpuZ out =

Output File(s)

OK | Cancel |

When easyDSP monitors two cores CPU1 and CPU2, to devide the variable name of each
core, easyDSP adds prefix to the original name, "1:" to CPU1 variables, "2:" to CPU2 variables.
For example, if the name of variable is "varl" in your CPU1 program, easyDSP displays it as "1:varl".

STM32WL dual core

easyDSP offers two options as below. The arrow in the picture means the data flow between easyDSP
and CPU.
easyDSP project should be created for all the yellow cores.

63

easyDSP help

Case 1l
easyDSP project |<@—=| easyDSP pod |<€1| USARTn || CPU1 | MEMOY
* elf file for CPU1 for CPUM
- Memaory
casyDSP project |<e—| easyDSP pod |<&1®| USARTM |@— CPUZ2 |t
* elf file for CPU2 for CPU2
Case 2
Memaory
easyDSP project [=%—%= easyDSP pod (== USARTn == CPU1 |- -
* glf file for CFUA1
+ glf file for CPU2 \
M
CPU2 emory
for CRUZ2

Case l:

Each CPU has a own connection to easyDSP pod. For each CPU, please set accordingly to what is
described in the previous pages .

If you register optional output file, each easyDSP project can flash for both CPU1 and CPU2. If not,
each easyDSP project can flash only one CPU.

Settings CPU1 CPU2
casvDSP register CPU1 output file register CPU2 output file
ro')(/ect regieter CPU2 output file (optional) regieter CPU1 output file (optional)
prol check CPU1 check box check CPU2 check box
main.c call easyDSP_init(USARTN) call easyDSP_init(USARTm)
call USARTx_IRQHandler() in call USARTx_IRQHandler() in the
stm32h7xx_it.c
the ez_USARTx_IRQHandler() ez_USARTx_IRQHandler()

Case 2:

easyDSP is connected to CPU1 and makes an access to all the memory via CPU1. CPU2 can't be used
for this purpose.

Therefore like single core MCU, easyDSP related settings are same to what is described in the previous
pages . There is no easyDSP related setting to CPU2.

Settings CPU1
easyDSP register CPU1 and CPU2 output files
project check CPU1 and CPU2 check boxes

64

easyDSP help

main.c

call easyDSP_init(USARTN)

stm32h7xx_it.c

call USARTx_IRQHandler() in
the ez_ USARTx_IRQHandler()

STM32H7 dual core

Depending on data cache usage (Stm32CubeMx > System Core > CORTEX_M7 > Parameter Settings >
Cortex Interface Settings > CPU DCache), easyDSP offers three different connections.
The arrow in the picture means the data flow between easyDSP and CPU.

Case 3

easyDSP project
* elf file for CPU1
* elf file for CPU2

Case l1l:

STM32H7 dual core with D cache
-l casyDSP pod - USARTn (== CPUx [-2—= Memory
for CPUx
SEV interrupt handler + shared memory
Memory
CPUy |t
x=1or2 LG
y=2or1

Each CPU has a connection to easyDSP. This configuration can be used independent of data chache

usage.

For each CPU, please set accordingly to what is described in the previous pages .
If you register optional output file, each easyDSP project can flash for both CPU1 and CPU2. If not,
each easyDSP project can flash only one CPU.

check CPU1 check box

Settings CPU1 CPU2
easvDSP register CPU1 output file register CPU2 output file
proj)éct register CPU2 output file (optional) register CPU1 output file (optional)

check CPU2 check box

easyStm32LL.h 1

EZ DUAL_CORE =1
EASYDSP_IS_CONNECTED_TO_THIS_CORE =

EZ USE_SEV_INT=0

EZ DUAL CORE=1

EASYDSP_IS_CONNECTED_TO_THIS_CORE =
1
EZ USE_SEV_INT =0

main.c

call easyDSP_init(USARTN)

call easyDSP_init(USARTm)

stm32h7xx_it.c

call USARTx_IRQHandler() in
the ez_USARTx_IRQHandler()

call USARTx_IRQHandler() in
the ez_USARTx_IRQHandler()

65

easyDSP help

Case 2:

If data cache is not used, easyDSP can access all the memory via CPU1. CPU2 can't be used for this
purpose. Therefore like single core MCU, easyDSP related settings are same to what is described in the
previous pages .

There is no easyDSP related setting to CPU2.

Settings CPU1
easyDSP register CPU1 and CPU2 output files
project check CPU1 and CPU2 check boxes

EZ_DUAL_CORE =1
easyStm32LL.h|[EASYDSP_IS_CONNECTED_TO_THIS_CORE = 1
EZ_USE_SEV_INT =0

main.c call easyDSP_init(USARTN)

call USARTx_IRQHandler() in the

stm32h7xx_it.c ez_USARTx_IRQHandler()

Case 3 :

If data cache is enabled, easyDSP uses SEV interrupt and dedicated shared memory to avoid cache
coherence issue.

easyDSP pod can be connected to either CPU1 or CPU2. Please select the proper CPU for easyDSP pod
connection based on your application.

SEV interrupt should be enabled with the lowest priority in the STM32CubeMx > System Core >
NVIC1 and NVIC2.

MWIC1 Interrupt Table Enabled FPreemption Priority |

Mon maskable interrupt

Hard fault interrupt

Memaory management fault
Pre-fetch fault, memory access fault
Undefined instruction or illegal state
System senvice call via SWI instruction
Debug monitor

Pendable request for system senvice
Time base: System tick timer
USART3 global interrupt

CM4 send event interrupt for CM7

(<M< H< < <M< M < W< MW
Lo DU e N e B o [B R s

66

easyDSP help

MVIC2 Interrupt Table Enabled Preemption Priority

Mon maskable interrupt

Hard fault interrupt

Memory management fault
Pre-fetch fault, memory access fault
Undefined instruction or illegal state
System semnvice call via SWI instruction
Debug monitor

Pendable request for system service
Time base: System tick timer
USART1 global interrupt

CM7 send event interrupt for CM4

(S <M< Ml M<JH< << M

The shared memory could be located anywhere but the location of SRAM4 is recommended. Note that
1. This memory area (32 bytes from start address) should not be used by both CPU1 and CPU2.
Please take care of linker script file.
2. The start address should be aligned to 32 bytes. For example, 0x38000000 or 0x38000020
3. This memory are should be non cacheable. MPU settings are necessary in the Stm32CubeMx >
System Core > CORTEX_M7.

~ Cortex Memory Protection Unit Region 0 Settings

MPU Region Enabled

MPU Region Base Address 038000000

MPU Region Size 32B

MPLU TEX field level level 1

MPU Access Permission ALL ACCESS PEEMITTED
MPU Instruction Access DISABLE

MPLU Shareability Permission ENABLE

MPLU Cacheable Permission DISABLE

MPLU Bufferable Permission DISABLE

Finally include easyDSP source file to both CPU1 and CPU2 projects and set properly as below table.

Settings

CPUx (easyDSP pod is connected to)

CPUy (easyDSP pod is not connected to)

easyDSP project

register CPU1 and CPU2 output files
check CPU1 and CPU2 check boxes

no easyDSP project

easyStm32LL.h

EZ_DUAL_CORE =1

EASYDSP_IS CONNECTED_TO_THIS_COR
E=1

EZ _USE_SEV_INT =1
EZ_SHARED_MEM_ADDRESS = user
defined

EZ_DUAL_CORE =1

EASYDSP_IS CONNECTED_TO_THIS_COR
E =0

EZ_USE_SEV_INT =1
EZ_SHARED_MEM_ADDRESS = user
defined

main.c

call easyDSP_init(USARTN)

call easyDSP_init(0)

stm32h7xx_it.

C

call USARTx_IRQHandler() in
the ez_USARTx_IRQHandler()
call CMx_SEV_IRQHandler() in
the ez_SEV_IRQHandler()

call CMx_SEV_IRQHandler() in
the ez_SEV_IRQHandler()

67

easyDSP help

7.2.4 STM32 RAM booting

You can skip this page if you don't use RAM booting.

easyDSP is supporting RAM booting using boot loader of MCU.

Therefore, all the differences from RAM booting with debugger comes from bootloader.

Please note that ram booting using boot loader has some limitation such as limited RAM area and some
bugs in boot loader.

Please refer to below guideline for its implementation.

Steps Example or further explanation

1. Below MCU can't support RAM booting.
STM32F04xxx
STM32F070x6
STM32L01xxx/02xxx
STM32L031xx/041xx

2. If bootloader of MCU is not the latest one, RAM booting is blocked. Please check
the MCU and bootloader version in the table. If the latest bootloader is in the MCU, no
limitation. For its details, please check the latest version of AN2606 (STM32
microcontroller system memory boot mode).

MCU Bootloader version

STM32H74xxx
STM32H75xxx
1. Limitations STM32L552xx
STM32L562xx

V13.2 (0xD2)

V13.0 (0xDO)

STM32L47xxx V10.1 (0xA1)
STM32L48xxx V9.0 (0x90)

STM32F100xx
STM32F101xx
STM32F102xx
STM32F103xx V2.0 (0x20)
(except STM32F101xF,
STM32F101xG, STM32F103xF,
STM32F103xG)

3. no RAM booting supported for dual core MCU (H745, H747, H755, H757, WL5Xx)

68

2. Modification
of RAM
memory map
in the linker
script file

User code
can't reside in
the RAM area
which MCU
bootloader is
using.

Also there is a
memory area
which is not
accessible in
the bootload
mode.

So, linker
script file
should be
modified so
that user

code reside in
the RAM
properly.
Please check
the RAM area
usable for RAM
booting in the
latest
AN2606(STM3
2
microcontroller
system
memory boot
mode) .

easyDSP help

Table 145. Bootloader device-dependent parameters (continued)

STM32 Device FID ELID RAM System
Series M emory
0x20002000 -
D31 0x2001FFFF
STMI2F 400 1 a0 Dot 13
x50 0x20003000 -
" 0x2001FFFF
070
- _ . 020003000 -
STMIZF4 2w 3no0: Qo418 Deo1 0x2002FFEE
- - - 0x20003000 -
STM3ZF401xB(C) Dhed23 OxD1 Dv3000FFFE
- _ _ _ 020003000 -
STM32F401xD(E) D433 OxDH1 S ——
o . 0x20003000 - | Ox1FFFO00D -
F4 [sTMazF41mo Ox458 0xB 1.30007FFF | OxIFFFTTFF
- s - 0x20003000 -
STM32F411xx D421 000\ puoo1FFFE
- .. 0x20003000 -
STM32F412xx D41 D=0 Dx2003FFFF
- - 0x20003000 -
STMI2F4480 Gxazi 0xe0 0x2001FFFF
- - 0x20003000 -
STMIZE46G:004 T G w434 0x20 Dv300SFERE
020003000 -
STM32F 4134 235x DxdE3 0x20 R

This example is based on STM32F413.
In STM32F413ZHTX_RAM.Id file, RAM area is defined as below.

S* Memories definition */

MEMORY
1
RAM (xrw) : ORIGIN = @x2eap@aes, LENGTH = 328K
FLASH (rx) : ORIGIN = éxseapesa, LENGTH = 1536K
b

But first 12k byte is used by bootloader and user code can't use this area.
Therefore please modify RAM area to start from 0x20003000.

/* Memories definition for RAM booting*/

MEMORY
1
RAM (xrw) : ORIGIN = @x28ea3ee8, LENGTH = 383K
FLASH (rx) ¢ ORIGIN = éxteeaees, LENGTH = 1536k
b

3. Locate ISR
vector table in
the first
address of
RAM memory

For RAM booting, easyDSP assumes ISR vector table is located in the first address of
RAM memory.

So, the vector table should be located in the first address of RAM memory. In case of
Stm32Cubelde, this condition is met by placing .isr_vector in the first part of
SECTIONS. Since this is default feature of linker script file Stm32Cubelde generates,
you don't need to do any additional job if you use Stm32Cubelde.

In case you use another Ide, please make sure this condition is implemented.

69

easyDSP help

[* Sections */

SECTIONS
{
/* The startup code into "RAM" Ram type memory */
Lise_vector
{
. = ALIGN(4);
KEEP(*(.isr_wvector)) /* Startup code */
. = ALIGN(4);
1} >RAM

4. register the
modified linker
script file in
the linker
option.

Toolchain Version & Tool Settings & Build Steps Build Artifact Binary Parsers @ Error Parsers

(£2 MCU Settings VSR8 B workspace loc,/${ProjName}/STM32F413ZHTX_RAM.Id [I
@ MCU Post build outputs
v B MCU GCC Assembler System calls Minimal implementation (--specs=nosys.specs) ~

@ General

(2 Debugging

(25 Preprocessor

2 Include paths

(# Miscellaneous
w By MCU GCC Compiler

(% General

(22 Debugging

@ Preprocessor

@ Include paths

@ Optimization

2 Warnings

@ Miscellanecus
w B MCU GCC Linker

(2 General

(#2 Libraries

(# Miscellaneous

Generate map file (-Wl,-Map=)

[J Add symbol cross reference table to map file (-WI,--cref)
Discard unused sections (-WIl,--gc-sections)

[Verbose (-WI,--verbose)

[Do not use standard start files (-nostartfiles)

[] Do not use default libraries {-nodefaultlibs)

[IMo startup or default libs (-nostdlib)

5. Change of
vector table
address

Again, this example is based on STM32F413.

system_stm32f4xx.c BEFORE change

VECT_TAB_OFFSET is defined as 0x00 for flashrom booting.
'* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET @x88 /*!< Vector Table base offset field.
This wvalue must be a multiple of @x2e@. */

system_stm32f4xx.c AFTER change

Since the user code starts from 0x20003000, VECT_TAB_OFFSET should be changed
to 0x3000.

Please define VECT_TAB_SRAM and set the VECT_TAB_OFFSET to 0x3000.

Note) you need to define USER_VECT_TAB_ADDRESS in some MCU cases (ex,
STM32L5, STM32U3)

Below is the recommendation. You can easily switch between RAM booting and flash
booting by defining VECT_TAB_SRAM or not respectively.

#ifdef VECT TAB_SRAM
#define VECT _TAB_OFFSET @x38e8
#else
#define VECT TAB OFFSET @w@@ /*!< Vector Table base offset field.
This walue must be a multiple of @x28@. */
#endif

You might need to consider further for the specific MCU. Please check "Miscellaneous
Configuration" part of system_stm32yyxx.c file.

70

easyDSP help

Depending on the MCU and its bootloader version, further consideration is necessary :

casel : Bootlader version 9.0 with STM32H74x/H75x
stack pointer in the STM32H743ZITX_RAM.Id file as shown below

_estack = ORIGIN(RAM D1) + LENGTH(RAM D1}; /* end of "RAM_D1" Ram type memory */
should be changed to below by adding -16.

_estack = ORIGIN(RAM_D1) + LENGTH(RAM_D1) - 16; /* Application stack pointer must be lower than (RAM end @ - 16 bytes) */

case 2 : STM32WB55
Below three lines should be inserted at the end of STM32WB55RGVX_RAM.Id file.
MAPPING_TABLE (NOLOAD) : { *(MAPPING_TABLE) } >RAM_SHARED

6. Others

MB_MEM1 (NOLOAD) : { *(MB_MEM1) } >RAM_SHARED
MB_MEM2 (NOLOAD) : { _sMB_MEM2 = . ; *(MB_MEM2) ; _eMB_MEM2
=.:} < /FONT >

case 3 :STM32WBA M
stack pointer in the STM32WBA52CGUX_RAM.Id file as shown below

_estack = ORIGIN(RAM) + LENGTH(RAM);
should be changed to below by adding -16.
_estack = ORIGIN(RAM) + LENGTH(RAM) - 16;

7.2.5 STM32 cautions

Some communication IO pins are set to output pin during bootloader
operation

Sometimes MCU enters into bootloader operation. For example, RAM booting and flash operation of
easyDSP are executed in the bootloader operation of MCU. Some MCU enters bootloader after reset if
the flash of MCU is empty.

Special care should be taken for your board design considering that some communication IO pins are
set as output pin during bootloader operation. You can identify these pins with ST's application note
(LAN2606 : STM32 microcontroller system memory boot mode). In your board design, there should be
no damage even under bootloader operation which sets some IO pins the output. For example, if these
IO pins are connected to directly VDD or GND, the damage could be caused.

Full rebuild of STM32CubelIDE

STM32CubelDE requests full rebuild if the project setting has a major change. In this case, all files in
the compiler's output folder will be deleted. If your easyDSP project is located in the compiler's output
folder, all easyDSP files also will be deleted.

71

https://www.st.com/content/ccc/resource/technical/document/application_note/b9/9b/16/3a/12/1e/40/0c/CD00167594.pdf/files/CD00167594.pdf/jcr:content/translations/en.CD00167594.pdf

easyDSP help

Confirm rebuild 7 4

The toolchain settings have changed. A full rebuild is required for changes to take
effect. Do the full build now?

USART baud rate
If the allowable resource for USART interrupt is limited, high baud rate could make overrun error.
Bank mode in the MCU name

In case of some STM32 MCU, single or dual bank is specified in the MCU name only when bank mode
should be specified. That is, there is no bank mode in the STM32 MCU name either when bank mode is
fixed (single or dual) in the MCU or when there is no need for understanding bank mode for easyDSP
operation.

7.3 832
7.3.1S32K1 + SDK

This page assumes that the user uses S32 Configuration Tools and S32K1 SDK API.
STEP 1 : Hardware

Please select the UART channel and pins according to your board. No constraints to selectable channel
and pin.

Then connect them to easyDSP like below.

In case flash programming is not used, no need to connect /BOOT and /RESET pins.

VDD VDD
20K 20K
VDD
. S32 series
—24 2 1P E- LPUARTR_RX (n=0,1,...)
4 3 [LPUARTNR_TX (n=0,1,...)
e B 5 [BOOT
/RESET
t—04 4 gp? PTAS (/RESET)
— easyDSP Header

I—VSS

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU /RESET, it should transfer the signal
within 0.5sec.

- TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP pod.

72

easyDSP help

STEP 2 : S32 Configuration Tools

As explained in STEP1, please select the UART channel and pins. And set the configuration tool (Pins
tab) accordingly.

Also kindly set the identifier as 'EZ_TX' and 'EZ_RX' respectively for TX and RX pins.

In below example, PTA2 and PTA3 are chosen as RX and TX respectively with LPUARTO.

Also set the pin properties as shown in Rounting Details tab. Note that pull-up should be set.

£ Pins 33 = O ¥ Package 2 QAQoHE =
g8 0 Rol(cdlcd P type filter text
Pin Pinname Label Identifier PORT FM ADC LPUART TRGMUK 13332353852z
3 7B PTB3 FIMI_CHI[.] ADCO_SE7 DA R E R e e
2 pTE2 pTB2 FIMI_CHO.] ADCO_SE5 TRGMUKINZ
25 P18 PTEI TCLko ADCOSES LPUARTOTX '3
26 PTBO PTBO ADCOSE4 LPUARTORX (i [
a7 PIcs PTCY FIMI_FLT! LPUARTI_TX[..] P10 000 cano Fra
28 PICs PTC8 FIM1_FLT LPUARTI_RX[..] e cura FLEdO o
20 PTAT PTAT FTMO_FLT2 ADCOSE3 LPUARTI_RTS] A
30 |VSS 40 PTES) A PTD3
Lpizco Lpspin
31/VDD_41 voD_7. LPsPIT LPTMRD PTE13
2 P1E1 PTB13 FIMO_CH! oon — — ot
33 PTD3 PTD2 TRGMUK_IN4 ose PORTA
34 PTD2 pTD2 TRGMUX NS vs5_10 PORTE PORTC V85
35 |5 EZTX EZ_TX pTA3 LPUARTO_TX - PORTD PORTE .
36 [P £2_RX £2 RX pTA2 LPUARTO_RX Platform Power/ndGround
37 PTA PTAT FIMI_CHI[.] ADCOSE? LPUARTORTS TRGMUX_OUTD Free E10) B Fres
33 PTAD PTAD ADCOSED LPUARTOLCTS TRGMUX_OUT3 ProM8 TREMUX Proa
39 PICT PTCT FIM1_QD_PHA LPUARTI_TX
- PTDIS PTED
0 PTCE PTCs FTM1_QD_PHB LPUART1_RX
41 PTA13 PTAI3 FTM1_CH? G S32K118_LQFP48 - LQFP 48 package L
12 PTA12 PTA12 FIMI_CHG
3 PTA PTAI FIMI_CHS
4 PTAID PTAID FIMI_CH4 @ g &2 @F 8528 B8
45 PTCS PICS e R e s s E £ E = =
46 PTC4 PTCA FIM1_CHOL..]
a7 PTAS PTAS TCLKY
£} Routing Details 2=
i P typefitter text
Routing Details for BOARD_InitPins 2 0
Peripheral Si. Amow Routed pin/signal Label lden.. Powergroup Direction Intemupt Status Interrupt Configuration Lock Register Pull Enable Pull Select Digital Filter Drive Strength Passive Filter il Value
36 LPUARTD od (361 PTA2 EZRX EZRX Input Don'tmodify Interrupt Status Flag (ISF) is disabled Unlocked [Enabled Pull Up Disabled n/a n/a n/a
35 LPUARD txd (351PTA3 EZTX EZTX Output Don'tmodify Intemupt Status Flag (ISF) is disabled Unlocked | Enabled Pull Up Disabled n/a n/a n/a

And add the Ipuart module in the Drivers.

Wt Components 2 | ¥ Peripherals = B
type filter text o N Select which components should be offered |All
Drivers 2 type filter text
edma_config_EDMA asif Configuration component Component description
& Ipspi LPSPI configuration
PAL [+] & Iptmr Low Power Timer
Ipuart LPUART Configuration
05 [+] £ mpu_config 532 SDK Peripheral Driver for Memory Protection Unit (M|
osif OSIF configuration
Libraries (+] & pdb_config Programmable Delay Block
& power_manager Power Configuration
Middleware [+] & rtc Real-Time Clock
& trgmux 532 SDK Peripheral Driver for Trigger MUX Control (TRGN
& wdog_config 532 SDK Peripheral Driver for WatchDog Timer (WDOG)

And set the module properties. Its name should be set same to below. The UART channel is set

as STEP2. In this example, it is set as LPUARTO as same as STEP2.

Also set communication properties as shown. The baudrate should be same one to one in the easyDSP
project setting.

73

easyDSP help

ez_lpuart_InitCor|

& Components 2+ Feriphersls =0 [§ st (% ezipusn 1t =o

type filter text © 1 LPUART Configuration e e

T e T 0 e copn custom e @
edma_config EDMA ez lpuart osit Mode [General Mode | Peripheral [LAUART 0

I o | - 2t i

S e e e sl

D e e et

S wedeas 0

Name ez_|puart_InitConfig
Read-only a
Transfer Type Interrupts
Baudrate 115200
Actual Baudrate 115942
Parity Mode Disabled
Stop Bits 1
Bits per_char 8
[
— 0

Also make sure the clock to the UART channel is set properly and enabled. Please refer to below
example.

2 Clocks Diagram E@W 2 Clocks Table = 8 = 8

— @ @ & [ELPUARTOCLK

Overview @ Peripheral Clock Vi.. 32 [¢) Code Preview [1) Registers i= Details &3 Clock Consumers

Run Mode Clock Name Enable Control Source Divider Divlype Frequency Monitor
: ADCO_CLK ™M SCG SIRC DIV2 clock 8 MHz
3 NOTE: CMPO_CLK ™M Bus dock 48 MHz
! - To provide clock for peripheral, us CRCO_CLK ™M Bus clock 48 MHz
l For example, FThn, when enabling DMAQ_CLK o System clock 48 MHz
i
! DMAMUX0_CLK M Bus clock 48 MHz
| EIMO_CLK g System clock 48 MHz
i S0SC DVE CI ERMO_CLK M System clock 48 MHz
! SIRC DIVZ Clo LPSRID_CLK FLEXCANO_CLK M System clock 48 MHz
3 FIRC DIVZ Clog 8 MHz FTFCO_CLK M Flash clock 24 MHz
! FTMO_CLK M SCG SIRC DIV clock 8 MHz
| FTM1_CLK ™M SCG SIRC DIV clock 8 MHz
1 FlexI00_CLK ™M SCG SIRC DIV2 clock 8 MHz
i
! 2l D Lleg LR e LPI2C0_CLK ™ SCG SIRC DIV2 clock 8 MH
! FIRC DIV Clog & MHz . e :
3 LPITO_CLK M SCG SIRC DIV2 clock 8 MHz
I LPSPIO_CLK M SCG SIRC DIV2 clock 8 MHz
! X
| LPSPI1_CLK ™M SCG SIRC DIV2 clock 8 MHz
|
i LPUARTO_CLK ™M SCG SIRC DIV2 clock 8 MHz
! SIRC DIVE Clog Lo CLK LPUART1_CLK o SCG SOSC DIV2 clack 8 MHz
} FIRC DIve C\ns 8 MHz o
| MPUO_CLK M System clock 48 MHz
i
! MSCMO_CLK @ System clock 48 MHz
| PDBO_CLK g System clock 48 MHz
i SIRC DIVZ Clo ATI-CLE PORTA_CLK M Bus clock 48 MHz
i FIRC DIV2 C\os 8 MHz PORTB_CLK A Bus clock 48 MHz
| PORTC_CLK M Bus clock 48 MHz
i
! PORTD_CLK M Bus clock 48 MHz
i
| PORTE_CLK @ Bus clock 48 MHz
S0SC DIV2 Clg
i SIRC DIV2 Clo RTCO_CLK @ Bus clock 48 MHz
| FIRC DIV2 Clocl
—

So far, the setting is for the communication with easyDSP for monitoring variables.

If you like to use the easyDSP bootloader for flash programming, the following process is also required
because easyDSP bootloader uses flash driver. Please add flash component in the Drivers and change
the names as shown below.

W Components 23} ' Peripherals g n Select configuration component O X
type filter text © M selectwhich components should be offered [All
type filter text
edma_config_EDMA ez_lpuart asif Configuration component Component description
& flash FLASH
& flexcan_config FlexCAN Configuration
& flexio_i2s_config Flexio 125
& flexio_i2c_config Flexio 12C
& flexio_spi_config Flexio SPI
& flexio_uart_config Flexio UART
& flexTimer_ic FTM configuration
& flexTimer_mc FTM configuration
& flexTimer_oc FTM configuration
& flexTimer_pwm FTM configuration
& flexTimer_gd FTM configuration
OK Cancel

74

easyDSP help

& Components &1 = O §Swmn (2ezlpuart (3 ez flash i =0
type filter text © 1 FLASH privers B/ €O
Drivers © Name ezflash Custom name @
edma_config_EDMA ez_flash ez_ipuart osit Made |General Peripheral FTFC
PAL © | FLASH Configuration Preset Custom..
os [+] User Configuration List +| %
Libraries [+] # Canfiguration Read-only PFlash base address Plashsize Dflash base address EERAMBase address Callback
0 ez_Flash_InitConfig [0400000000 040000 0x10000000 0x14000000 NULL_CALLBACK
Middieware L)

STEP 3 : Source code correction for easyDSP bootloader

Please skip this step if you don't program flash with easyDSP.

You can find the source file flash_driver.c which is generated by Configuration Tool in the below
location. easyDSP uses two functions. To make them run in the ram, first declare them as in the red
box in the beginning of the file,

%5 Project Explorer &2 BESY § =0 flash_driver.c 5
v % $32K118_Blinky: Debug_FLASH
> &l Includes #include "flash_driver.h"

. 5 Debug_Configurations #include "interrupt_manager.h"

> 2 Project_Settings

START_FUNCTION_DECLARATION RAMSECTION

v & 5DK status_t FLASH_DRV_EraseSector(const flash_ssd_config t * pSSDConfig,
v (= platform uint32_t dest,
> = devices uint32_t size)
~ (= drivers END_FUNCTION_DECLARATION_RAMSECTION
3 Einc
v @& src START_FUNCTION_DECLARATION_RAMSECTION
status_t FLASH_DRV_Program(const flash_ssd_config_t * pSSDConfig,
» & dock uint32_t dest,
¢ & edma uint32_t size,
v (& flash const uint8 t * pData)
> flash_driver.c END_FUNCTION_DECLARATION_RAMSECTION
> (= interrupt

START_FUNCTION_DECLARATION RAMSECTION

> = lpuart
s & pins static status_t FLASH_DRV_CommandSequence(const flash_ssd_config t * pSSDConfig)
. ’ END_FUNCTION_DECLARATION_RAMSECTION
> & ros static status_t FLASH_DRV_ProgramCheckExecute(const flash_ssd_config_t * pSSDConfig,
> & board uint32 t dest,
5 2 src uint32 t size,
> = Debug_FLASH const uint8_t * pExpectedData,
s @ doc uint32_t * pFailAddr,
> % Doxygen uint8_t marginlevel);
: = —f’**************ﬁﬁ**************ﬁﬁ***************ﬁﬁ**************ﬁﬁ**************
B description.txt * Code
532K118_Blinky.mex KK KK KK HHAK %

then add the macro like below at the location of function definition in the middle of the file.

START FUNCTION DEFINITION RAMSECTION

status t FLASH DRV EraseSector(const flash ssd config t * psSsDConfig,
uint32 t dest,
uint3z t size)

// contents of this function

}
END FUNCTION DEFINITION RAMSECTION

START FUNCTION DEFINITION RAMSECTION

status t FLASH DRV Program{const flash ssd config t * pSSDConfig,
uint32 t dest,
uint32 t size,
const uintfé t * pData)

// contents of this function

}
END FUNCTION DEFINITION RAMSECTION

75

easyDSP help

In case the Configuration Tool detects the correction of this file and ask like below, please choose
'Keep existing'.

. SDK Component Management b4

| 'e The file 'SDK/platform/drivers/src/flash/flash_driver.c’ already exists in your project but is
W' different from the SDK component file,
MOTE: 'SDK/platform/drivers/src/flash/flash_driver.c’ could belong to the selected
component(s) or one of its dependent components.
Please select from the following options:

[] Remember my decision

Replace Compare

STEP 4 : Calling easyDSP functions

Three files are provided for easyDSP communication and flash programming (easyS32K1_SDK.h,
easyS32K1_SDK_comm.c and easyS32K1_SDK_boot.c). Please include them in your project. You can
find them in the easyDSP installation folder (\source\S32).

In case you use the easyDSP bootloader to program flash, define EZ_BOOTLOADER_USE as 1 in the
easyS32K1_SDK.h file. In case you don't use the easyDSP bootloader for flash programming, define
BOOTLOADER_USE as 0.

_..-'J.J.J.J.J.AJ.AJ.J.J.J.J.J.J.J.J.J.AJ.AJ.J.J.J.J.J.J.J.AJ.AJ.J.J.J.J.J.J.J.J.J.AJ.J.J.J.J.J.J.J.J.J.J.J.AJ.AJ.J.J.J.J.J.J.J.J.J.AJ.AJ.
In case you uses the bootloader provided by =asyDSP to program flash,
define EZ BOOTLOADER USE as 1

A e ke e b ahe ke ke ke ke b ke ke ke ke b ke e ke e ke e ok ke Ak ke e ok ke ke ke e b ake b ke b ke b b ke b ke b ke e b e ok ok e ke e b e ok ke ke b ahe ok ke b e b b ke ke ke ke ke ok

fdefine EZ_BOOTLOADER USE 1

Please include easyS32K1_SDK.h in the main.c. And in the main(), call easyDSP_init() after the
initialization of MCU.
In the easyDSP_init() function, all necessary setting for easyDSP monitoring are done.

76

easyDSP help

In case you use easyDSP for flash programming, call easyDSP_boot() after setting of clock and pins.
finclude "easyS32Kl_SDE.h"

int main(void)
{
/* Initialize and configure clocks — see clock manager component for details */
CLOCK_SYS_Init(g_chckManCmnfigsnrr, CLOCE_MANAGER CONFIG_CNT,
g_clockManCallbacksArr, CLOCE MANAGER CALLBACE CNT) ;
CLOCE_SYS UpdateConfiguration (00U, CLOCK MANAGER POLICY AGREEMENT) ;

/* Initialize pins - See PinSettings component for more info */
PINS DRV _Init(NUM OF CCONFIGURED PINSO, g pin mux InitConfigirrO);

$if EzZ BOOTLOADER USE

// Right after clock and pin setting, call easyDSP_boot() to enable flash programming
2asyDSP_boot () ;
fendif

/f reset of initial setting

// call easyDSP_init() to enable esasyDSP monitoring
2asyDSP_init () ;
/{ loop forever

while(l)
{

STEP 5 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling
time in the same folder of output file (for example, *.elf) with same file name. The hex file extension
could be either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it
for flash programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with
extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time. Please refer
to the setting of S32DS below.

77

easyDSP help

Properties for 532K118_Blinky_Test o
type filter text Settings - - i
> Resource
Builders .
« C/C++ Build Configuration: Debug_FLASH [Active | ~ | Manage Configurations..

Build Variables

Environment 3
® Tool Settings # Build Steps Build Artifact Binary Parsers @ Error Parsers

Loaging

Settings (# Cross Settings Prefix arm-none-eabi-

Tool Chain Editor iy

(2 Target Processor
Path ${532DS_K1_ARM32_TOOLCHAIN_DIR} Browse...
> CfC++ General 1 Standard S32DS C Compiler

EmbSys Register View 3 Dialect Suffix
Project Natures (# Preprocessar C compiler gee
Project References & Includes

Run/Debug Settings Hex/Bin converter objcopy

532 Configuration Tor

(& Optimization
2 Debugging Listing generator objdump

SDKs = i
&2 Warnings Size command size
Task Tags (& Miscellaneous .
> Validation « % Standard S3205 C Linker Build command make
& General Remove command rm -rf
& Libraries Create flash image
(& Miscellaneous [T Create extended listing
Properties for $32K118_Blinky_Test]
type filter text Settings M
> Resource
Builders .
« C/C++ Build Configuration: Debug FLASH [Active] ~ Manage Configurations...

Build Variables

Environment 3
® Tool Settings _# Build Steps Build Artifact Binary Parsers @ Error Parsers

Logging
Settings o # Cross Settings Output file format (-0} Intel HEX ¥
Toal Chain Editor (@ Target Processor

() section: - text
() Section: -j .data
Other sections (-]) &

~

C/C++ General v B Standard $32DS C Compiler
EmbSys Register View 2 Dialect

Project Natures (2 Preprocessor
Project References & Includes
Run/Debug Settings
532 Configuration Tor

Optimization
% Debugging

SDKs £ Warnings
Tas%(Tags # Miscellaneous
> Validation ~ i Standard $32DS C Linker

General
(2 Libraries
Miscellaneous
(# Shared Library Settings
(& Link Order

~ & Standard 532DS Assembler
2 General
(&2 Preprocessor
(# Debugging

~ & Standard 532DS Create Flash Image
(2 General

2. For easyDSP monitoring, the debug information should be included in the output file (for example,
*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded. For example, in S32DS, no check in the check box in the linker option.

[] Remove unused sections (-Xlinker --gc-sections)

STEP 6 : Limitation of easyDSP bootloader

1. To program flash, the bootloader should be provided since there is no ROM bootloader in this MCU.
The bootloader easyDSP provides is the function (name : easyDSP_boot) and it resides in the user
program. Therefore it can program flash only when it is already programmed in the flash. In case flash
is empty or flash doesn't have easyDSP bootloader, you can't enter into the bootloader and will see the
message below. In this case, you have to use the debugger to program flash. And in same principle,
you have to use debugger to program easyDSP bootloader into flash at the beginning.

78

easyDSP help

[easyDSP x

l Bootloader was not entered !

2. easyD'S'P bootloader runs on RAM and it uses about 1.25kB RAM memory space (for -O1
optimization option).

7.3.2 S32K/S32M + RTD

It is assumed that the user uses S32 Configuration Tools and RTD (Real-Time Drivers).
STEP 1 : Hardware

Please select the UART channel and pins according to your board.

No constraints to selectable channel and pin except LPUART1 is not usable for S32M.
Then connect them to easyDSP like below.

In case flash programming is not used, no need to connect /BOOT and /RESET pins.

VDD VDD
20K 20K
VDD
. S32 series
—24 2 1P E- LPUARTR_RX (n=0,1,...)
- 4 K LPUARTR_TX (n=0,1,...)
G g [BOOT
e SR
10, 8 TP JRESET
10 g g PTAS (/RESET)
— easyDSP Header

I—VSS

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU /RESET, it should transfer the signal
within 0.5sec.

- TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP pod.

STEP 2 : S32 Configuration Tools for easyDSP monitoring

As explained in STEP1, please select the UART channel and pins. And set the configuration tool (Pins
tab) accordingly.

Also kindly set the identifier as 'EZ_TX' and 'EZ_RX' respectively for TX and RX pins.

In below example, PTA2 and PTA3 are chosen as RX and TX respectively with LPUARTO.

Also set the pin properties as shown in Rounting Details tab. Note that pull-up should be set.

79

easyDSP help

B Pins 33 [Peripheral Signals @ Power Groups = O dhPackage 1 QQeo&HE -
BE8 0 °e e P type filter text
Pin Pinname Label Identifier PORT FIM ADC LPUART TRGMUX 3 3 E § g i § ‘é § E S 3
23 B3 PTE3 FIMI_CHI[.] ADCOSE7 b s E R e S
24 p1B2 PTB2 FTM1_CHO...] ADCO_SE6 TRGMUX_IN3
25 pTB1 PTBI TCLko ADCOSES LPUARTOTX '3
2 PTBO PTBO ADCOSE4 LPUARTORX (i fa—
27 PTCY PTCY FIMI_FLTI LPUARTI_TXL..] PTO0 el] T3
28 PICs PTC8 FIM1_FLT LPUARTI_RX[..] e cura FLEdO o
20 PTAT PTAT FTMO_FLT2 ADCOSE3 LPUARTI_RTS (] A
30 V5SS 40 PTE4] EE PTD3
- Lpizco Lpspin
31 /VDD_41 voD_7 Lpseit PR PTEID
2 PTBI PTBI13 FIMO_CH!
! - I © LPUARTY LPUARTI @hg
33 PTD3 PTD2 TRGMUK_IN4 ose PORTA
34 PTD2 pTD2 TRGMUX NS vs5_10 PORTE PORTC ves
s [Fs e b lpum e
36 [BHB £2rx T2 LPUARTORX Platform PowerAndOround
37 PTAT PTAT FIMI_CHI[.] ADCOSE? LPUARTORTS TRGMUX_OUTD Free E10) B Fres
38 PTAO PTAD ADCOSED LPUARTOLCTS TRGMUX_OUT3 PTOIB {[EHIE L)
39 PICT PTCT FIM1_QD_PHA LPUARTI_TX
= PTDIS PTED
0 PTCe PTCS FTM1_QD_PHB LPUART_RX
41 pTA13 PTAI3 FTM1_CHT Gz S32K118_LQFP43 - LQFP 48 package L
42 P12 PTA12 FIM1_CHG
3 PTATI PTAI FIMI_CHS
4 PTAID PTAI0 FIMI_CH4 [T S T - T -
5| Pics s EEEEEEE BB EEE
6 PTCA FIM1_CHOL..]
a7 PTAS PTAS TCLKY
£} Routing Details 2=
P typefilter text
Routing Details for BOARD_InitPins 2 0
= Pperipheral Si. Amow Routedpin/signal Label Iden.. Powergroup Direction Interrupt Status Interrupt Configuration LockRegister Pull Enable PullSelect Digital Filter Drive Strength Passive Filter nitial Value
36 LPUARTD od (36] PTA2 EZRX EZRX Input Don't modify Intemupt Status Flag (ISF) is disabled Unlocked [Enabled Pull Up Disabled n/a n/a n/a
35 LPUARTD tad (351PTA3 EZTX EZTX Output Den'tmodify Intemupt Status Flag (ISF) is disabled Unlocked | Enabled Pull Up Disabled n/a n/a n/a

And add the Lpuart_Uart and IntCtrl_Ip module in the Drivers. If they exist, no need to add again.

i Components 53 I Peripherals = 0 Select configuration component O
type filter text o t Select which components should be offered |All
MCAL [+) type filter text
Configuration component Component description Category Required §
a7z % Gpio_Dic Gpic_Die Configuration Drivers platform.d
osif.1 Port Ip & InthtrI Ip IP .confiqufationl Dri\rers platform.d
& Lpi2c Lpi2c configuration Drivers platform.d
5 LPit_Gpt LPIT_GPT IPL Configuration Drivers platform.d
& Lpit_leu LPIT Driver Drivers platform.d
5 Lpspi Lpspi Configuration Drivers platfarm.d
& Lptmr_Gpt LPTMR_GPT IPL Configuration Drivers platform.d
2 Lptmr_lcu LPTMR Driver Drrivers platform.d
% Lpuart_Lin Lpuart Lin Configuration Drivers platform.d
% Lpuart Uart Lpuart Uart Confiquration Drivers platform.d
£ MPLI Memaore Protectinn |n Driver Mrivers nlatfarm.d ¥

And set the Lpuart_Uart module properties.

Please enable 'Uart Callback Capability' in the tab 'GeneralConfiguration' and set the name of callback
as 'ez_RxCallBack'.

Also set the various properties in the tab 'UartGlobalConfig'. In this example, LPUARTO is selected as
STEP1 and 2. The baudrate should be same one to one in the easyDSP project setting.

80

easyDSP help
|"_|-?' Lpuart_Uart 3
Lpuart Uart Configuration jpqver

Name Lpuart_Uart

Mode |LPUART UART Mode

Mame | ConfigTimeSuppeort | GeneralConfiguration | UartGlobalConfig

Mame GeneralConfiguration

Uart Development Error Detection [+]

Uart Timeout Method OSIF_COUMTER_DUMBY
Uart Timeout Duration 10000000

Llart DMA Enable [l

Uart Callback Capability [+]

w UartCallback

0 ez_RxCallBack

s Parameter for Uart Callback

Add item by clicking on plus button

+

81

easyDSP help
E Lpuart_Uart_1 =3
Lpuart Uart Configuration jpqc

Mame Lpuart_Uart_1

Mode |LPUART UART Mode

Mame | ConfigTimeSupport | GeneralConfiguration | UartGlobalConfig

MName UartGlobal Config

s UartChannel -+
ez_UartChannel Mame ez_UartChannel

UartHwUsing LPUART_IP

UartClockFunctional GroupRef BOARD_BootClockRUM

v DetailModuleConfiguration
Mame DetailModuleConfiguration
Uart hardware channel LPUART O
Desire Baudrate LPUART UART BAUDRATE 115200
Uart Asynchronous Method LPUART _UART_IP_USIMNG_IMTERRUPTS
Uart Parity Type LPUART_UART_IP_PARITY_DISABLED
Uart Stop Bit Mumber LPUART_UART_IP_OME_STOP_BIT
Uart Word Length LPUART_UART_IP_8_BITS_PER_CHAR
Uart Internal Loopback Mode Enable O

And set the IntCtrl_Ip module properties. In the tab 'Interrupt Controller', please enable the interrupt
of target LPUART channel and set its priority lowest (highest value). In the tab 'Generic Interrupt
Setting', set its interrupt handler as 'EZ_LPUART_UART_IP_IRQHandler'. For some MCU, the setting of
these tabs are combined to single tab.

82

[2 IntCtr_lp_1 22

Mame | CenfigTimeSupport | General Configuration | Interrupt Controller| Generic Interrupt Settings

X

Mame

IntCtriConfig_0

easyDSP help

% PlatformlsrConfig

[LT T S TR TR

L R I e B R R I R e T I e e e =
R T -~ - R T T R - R R R T T T

MName

PlatformlsrConfig_0
PlatformlsrConfig_1
PlatformlsriConfig_2
PlatformlsrConfig_3
PlatformlsrConfig_4
PlatformlsrConfig_5
PlatformlsrConfig_6
PlatformlsrConfig_7
PlatformlsrConfig_8
PlatformlsrConfig_9
PlatformlsrConfig_10
PlatformlsrConfig_11
PlatformlsrConfig_12
PlatformlsrConfig_13
PlatformlsrConfig_14
PlatformlsrConfig_15
PlatformlsrConfig_16
PlatformlsrConfig_17
PlatformlsrConfig_18
PlatformlsrConfig_19
PlatformlsrConfig_20
PlatformlsrConfig_21
PlatformlsrConfig_22
PlatformlsrConfig_23
PlatformlsrConfig_24
PlatformlsrConfig_25
PlatformlsrConfig_26
PlatformlsrConfig_27
PlatformlsrConfig_28
PlatformlsrConfig_29
PlatformlsrConfig_30
PlatformlsrConfig_31

Interrupt Name

DMAD_IRCn
DMAT_IRCN
DMAZ_IRCn
DMA3_IRCN
DMA_Error_ IROR
ERM_IRCn

RTC_IRCn
RTC_Seconds_IRCn
LPTMRO_IRCN
PORT_IRCnN
CANO_ORed_IRCn
CANO_ORed_0_31_ME_IRCn
FTMO_ChO_Ch7_IRCn
FTMO_Fault_IRCQn
FTMO_Ovf_Reload_IRCn
FTM1_ChO_Ch7_IRCn
FTMI1_Fault_IRCn
FTM1_Ovf_Reload_IRCn
FTFC_IRCn

PDEO_IRCN

LPIT_IRCn
PMC_SCG_CMU_IRCn
WDOG_IRGn
RCM_IRCn
LPI2C0_Master_Slave_[RCn
FLEXIQ_IRCn
LPSPID_IRCn
LPSPIT_IRCn
ADCO_IRCn
CMPO_IRCN
LPUART1_RxTx_IRCn
LPUARTO_RxTe_IRCn

Interrupt Enabled Priority

0

0

w o o o O QO QO O O O O O O O O O QO O Q O O O QO QO Q O O O O Q O

83

(2 IntCtr_lp_1 22

Mode |IP Mode

Marme | ConfigTimeSupport | General Configuration | Interrupt Contreller | Generic Interrupt Settings

Mame

intRouteConfig

easyDSP help

" PlatformlsrConfig

[==TE I = R N R o = 1

L I o O O L 1 e e e e el =
= = R = = R = o X L = =T == TR I = B O, T oy WX gy LK B R

Mame

PlatformlsrConfig_0
PlatformlsrCaonfig_1
PlatformlsrConfig_2
PlatformlsrConfig_3
PlatformlsrConfig_4
PlatformlsriConfig_3
PlatformlsrConfig_6
PlatformlsrConfig_7
PlatformlsrConfig_2
PlatformlsrConfig_9
PlatformlsrConfig_10
PlatformlsrConfig_11
PlatformlsrConfig_12
PlatformlsrConfig_13
PlatformlsrConfig_14
PlatformlsrConfig_153
PlatformlsrConfig_16
PlatformlsrConfig_17
PlatformlsrConfig_12
PlatformlsrConfig_19
PlatformlsrConfig_20
PlatformlsrConfig_21
PlatformlsrConfig_22
PlatformlsrConfig_23
PlatformlsrConfig_24
PlatformlsrConfig_25
PlatformlsrConfig_26
PlatformlsrConfig_27
PlatformlsrConfig_22
PlatformlsrConfig_29
PlatformlsrConfig_30

Interrupt Mame

DMAD_IRCn
DMAT_IRCR

D42 IROn

D43 _IROn
DMA_Error_IRCn
ERM_IRCn

RTC_IRCn
RTC_Seconds_|[RCn
LPTMRO_IRCn
PORT_IRCn
CAMD_ORed_IRCn
CAMD_ORed_0_31_MEBE_IRCn
FTMO_ChD_Ch7_IRCn
FTRAD_Fault_IRCin
FTPAD_Chf_Reload_IRCn
FTMI1_Ch0_Ch7_IRCn
FTM1_Fault_IRCn
FTPA1_Onf_Reload_IRCn
FTFC_IRCn

PDBO_IRCn

LPIT_IRCn
PMC_SCGE_CMU_IRCN
WDOG_IRCN
RCM_IRCN
LPI12C0_Master_Slave_|IRCn
FLEXIO_IRCn
LPSPIO_IRCn
LPSPI1_IRCn
ADCO_IRCR
CMPO_IRCn
LPUARTY_RxTe_IRCn

Handler

undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler
undefined_handler

L
—

Also make sure the clock to the UART channel is set properly and enabled. Please refer to below

example.

PlatformlsrConfig_31

LPUARTD_RxTx_IRCin

EZL_LPUART_UART_IP_IRCHandler |

84

easyDSP help

} Clocks Diagram 32 | FF} Clocks Table = g (@) Peripheral Clack View &2 =t
— @ Q B O & [PUARTD CLK Clock Name Ensble Control Source Divider Divype Frequency

Run Mede [RUN || Clock Development Error Detect Disabled || EIMD_CLK CORE_CLK 11 48 MHz
Clock User Mode Support | Disabled || Clock Loops Timeout 50000 | ERMD_CLK CORE_CLK n 48 MHz
FLEXCANO_CLK CORE_CLK /1 48 MHz
Clock Timeout Method | OSIF_COUNTER_DUMMY | Get Clock Frequency APl FIFCO_CLK E SLOW_CLK /1 24 MHz
Disabled || Enable Cmu Notification Disabled || CmuNtification FTMO_CLK M SIRCDIVI_CLK /1 8 MHz
NULLPTR FTM1_CLK M SIRCDIV_CLK /1 8 MHz
— FlexI00_CLK M SIRCDIV2_CLK /1 8 MHz
SIRCDIVZ_C| EFPS:P”ECAIZEZ GRIOO_CLK CORE_CLK /1 48 MHz

soscmvz_é K] LPI2CO_CLK M SIRCDIV2_CLK /1 & MHz

LPITO_CLK M SIRCDIV2_CLK /1 & MHz

LPO_TK_CLK M LPO_32K_CLK /32 1kHz

LPO_32K_CLK M LPO_126K_CLK ’4 32 kHz
iz FIRCDIV2_CI PTMROLCLE LPO_CLK The Low Power Oscillator (LPO) 128 KHz RC oscillator /1 128 kHz
SIRCDVZCL B> & WiHz LPSPIO_CLK M SIRCDIVZ_CLK 1 8 MHz

505COV2-CLK LPSPIT_CLK M SIRCDIV2_CLK /1 8 MHz

LPUARTD_CLK M SIRCDIV2_CLK n BMHz

LPUARTI_CLK % SIRCDIV2_CLK 1 & MHz
FIRCDIV2_C MPUO_CLK CORE_CLK 1 48 MHz
iz SIHCDIVZ.CE PUARTOCLE MSCMO_CLK CORE_CLK 1 48 MHz
s0sColv2Cll B MHz PDBO_CLK CORE_CLK 1 48 MHz
nnoTa Fiv i Av . 10 naLs

STEP 3-1 : S32 Configuration Tools for easyDSP boot loader of S32K1x

So far until STEP 2, the setting is for the communication with easyDSP for monitoring variables.

If you like to use the easyDSP bootloader for flash programming of S32K1x, the following process is
also required because easyDSP bootloader uses flash driver.

Please add Ftfc_Ip and Gpio_Dio component in the Drivers.

‘Components 5 = 0
type filter text 0 H Select which components should be offered |All
MCAL type filter text

Drivers

Configuration component Component description Category Required &

% Flexio_Uart Flexio Uart Configuration Drivers platform.d

. % Ftfc_Eep_lp FTFC EEP Configuration Drivers platform.d

i LS e & Ftfc_lp Ftfc_lp Cenfiguration Drivers platform.d
Port_p_1 & Ft_Gpt FTM_GPT IPL Configuration Drivers platform.d
& Ftm_leu FTM Driver Drivers platform.d

& Ftm_Mcl_lp FTM Drivers platform.d

% Ftm_Ocu FTW OCU Configuration Drivers platform.d

2 Ftrn_Pwm Ftm Pwmn driver Drivers platform.d

& Ftm_Qdec_|p FTM Qdec Configuration Drivers platform.d

& Gpio_Dio Gpio_Dio Configuration Drivers platform.d

i IntCtrl In IP ranfinuratinon Drivers nlatform.d

For Gpio_Dio component, the default setting is ok.
For Ftfc_Ip component, please disable 'Fls Timeout Supervision Enabled' button.

85

easyDSP help
(@ Ftic_lp &3
Ftfc_lp Configuration jpqyer;
MName Ftfc_lp
Mode |Mon-Autosar Mode

W

Mame |FlsConfigSet | FlsGeneral | AutosarExt | FlsPublishedInformation

Mame FtfcGeneral

Enable development error check at IP level
Fls ECC Handling HardfaultHandler

Fls ECC Handling ProtectionHook

Fls Erase Verification Enabled

Fls Write Verification Enabled

Fls Timeout Supervision Enabled

OSIF_COUNTER_DUMMY
2147483647
2147483647
2147483647
2147483647

AVTIET

S

(2 Fticlp &3

Ftfc_lp Configuration pie;
Mame Ftfc_lp

Mode |Mon-Autozar Mode

b

Mame |FlsConfig5et | FlsGeneral | AutosarExt | FlsPublishedInformation

Mame AutosarExt

Fls Enable User Mode Support [

Fls Synchronize Cache
Flz Inwvalid Prefetch Buffer From RARM

STEP 3-2 : S32 Configuration Tools for easyDSP boot loader of S32K3x

If you like to use the easyDSP bootloader for flash programming of S32K3x, please add C40_Ip and
Siu2_Dio components in the Drivers.

86

easyDSP help

Wi Components !] = O

type filter text o ti

For Siu2_Dio component, the default setting is ok.
For C40_Ip component, please disable 'FIs Timeout Supervision Enabled' button.

[2 C40lp &3
C40_Ip Configuration jorivers

Mame C40 lp

Mode | Mon-Autosar Mode

W
Name | FlsConfigSet | FlsGeneral | Autosarxt | FlsPublishedinformation
Mame C40General
Enable development error check at IP level]
Fls ECC Handling HardfaultHandler O
Fls ECC Handling ProtectionHook O
Flz Erase Verification Enabled]
Flz Write Verification Enabled]
Fls Timeout Supervision Enabled g
Fls Timeout Method |GS|F_CGUNTER_DUMMV
Fls Bsyrnc Mirite Tirmeout 2147483647
Fls fsync Erase Tirmeout 2147483647
Fls Spnc Write Tirmeout 2147483647
Fls Sync Erase Timeout 2147483647
Fls fsypnc Ahort Timeout 32767

87

easyDSP help

(2 C401p 2

C40_lp Configuration /pqer;
Name C40 |p

Maode |Mon-Autosar Mode

W
Mame | FlsConfigSet | FlsGeneral | AutosarExt | FlsPublishedInformation

Mame AutosarExt

Fls Enable User Mede Support [

Fls Synchronize Cache

Fls Data Error Suppression

FLS_COMMAND_PIPE 0

STEP 3-3 : S32 Configuration Tools for easyDSP boot loader of S32M24x

If you like to use the easyDSP bootloader for flash programming of S32M24x, please
add Ftfc_Mem_InFls_Ip and Gpio_Dio component in the Drivers.

M Components % 1 Peripherals = B8
type filter text o T'J' Select, which components should be offered |All
MCAL | | typefiltertext
Cenfiguration compenent Component description Category
Drivers . . .) . .
t Flexio_Spi 5pi Configuration Drivers
BaseNXP ol IntCtrl_lp . Flexio_Uart Flexic Uart Cor?flgura.tmn Dr?vers
t, Ftfe_Mem_Eep_lp FTFC EEP Cenfiguration Drrivers
Lpuart_Uart Port_lp_1 & Ftfc_Mem_InFls IE Ftfe_Mern_InFls_lp Driver Drivers
t Ftm_Gpt FTM_GPT IPL Configuration Dirivers
© Ftrm_lcu FTM Drriver Drivers
5 Ftr_Mcl_lp FTM Drivers
5 Ftm_Qcu FTM OCU Cenfiguration Dirivers
2 Ftm_Pwm Ftm Pwm driver Drivers
5 Ftm_Qdec_lp FTM Qidec Configuration Drivers
1
i Gpio Dic Gpio_Dic Configuration Drivers |
t Hvm HVM Configuration Drivers |
i IntCtrl_lp IP cenfiguration Drivers |
5 IPV_Mpu_lp IP configuration Drivers |
% Lpide LpiZc configuration Drivers

For Gpio_Dio component, the default setting is ok.

For Ftfc_Mem_InFls_Ip component, the default setting is ok. Please note that you have to disable 'Mem
Timeout Supervision Enabled' button in 'MemGeneral' tab and 'Mem Synchronize Cache' button in
'MemAutosarExt' tab.

STEP 3-4 : S32 Configuration Tools for easyDSP boot loader of S32M27x
88

easyDSP help

If you like to use the easyDSP bootloader for flash programming of S32M27x, please add C40_Ip and

Siu2_Dio components in the Drivers.

g Components ¢ = B
type filter text O ti
MCAL [+
Drivers [+
BaseMXP C40 Ip Cache_lp
IntCtrl_lp Lpuart_Uart Siul2_Dio
Siul2_Port

For Siu2_Dio component, the default setting is ok.

For C40_Ip component, the default setting is ok. Please note that you have to disable 'Mem Timeout
Supervision Enabled' button in '"MemGeneral' tab and 'Mem Synchronize Cache' button in

'MemAutosarExt' tab.

STEP 4-1 : Source code correction for easyDSP bootloader of S32K1x

From STEP 3-1, the relavant codes are generated and you can find Ftfc_Fls_Ip.h and Ftfc_FlIs_Ip.c files

in the folder RTD>include and RTD>src respectively.

easyDSP bootloader uses these flash API functions and they should run on the ram, not on the flash.

To make these functions run on the ram :

First, in the file Ftfc_Fls_Ip.h, find the location of function declaration, and change like below red boxes.

]

‘ FUNCTICN PROTOTYPES

//#define FLS START SEC CODE // commented
fdefine FLS_START SEC_REMCODE // applied for code in ram
finclude "Fls_MemMap.h"

7
@brief Initializes the FTCF module

@details This function will initialize ftfc module and clear all error flags.

Bparam[in] Fls I Pointer to the driver configuration structure.

@return
* @retval F SUCCESS Initialization is success
* @retval STATUS _FTFC_F P_ERROR_TIMECUT Errors Timeout because wait for the Done bit long time

*
Ftfc Fls_Ip StatusType Ftfc_Fls_Ip Init(const Ftfc ConfigType * Ftfc_Fls_Ip pInitConfig) ;

//#define FLS_STOP_SEC_CODE // commesnted
fdefine FLS_STOP SEC_RAMCODE // applied for code in ram
finclude "Fls MemMap.h"

fifdef _ cplusplus
}

fendif

/A @y +/

fendif /* FIFC_FLS_IP_H */

89

easyDSP help

Second, in the file Ftfc_Fls_Ip.c, find the location of static function declaration, and change like below
red boxes.

//#define FLS_START SEC_CODE // commente
§define FLS_START SEC RAMCODE // added by casy
5_MemMap.h"

finclude "

static boolean Ftfc_Fls_Ip CheckValidRange (uint32 startAddress, uint32 length);

static Ftfc_Fls_Ip StatusType Ftfc_Fls_Ip ReadPreCheck (uint32 u32SrcAddress, const uint8 *pDestAddressPtr, uint32 u32Length);
static Ftfc_Fls_Ip StatusType Ftfc_Fls_Ip_ ComparsPreCheck (uint32 u32SrcAddress, uint32 u32Length);

static Ftfc_Fls_Ip StatusType Ftfc Fls Ip SectorErassPreCheck (uint32 u32SsctorstartAddress) ;

Fls_TIp StatusType Ftfc Fls_Ip WritePreCheck(uint32 u32DestZddress, const uint8 *pSourceAddressPtr, uint32 u32Length) ;

static Ftfc

static Ftfc_Fls_Ip_StatusType Ftfc Fls Flash AbortSuspended(void) ;
static void Ftfc Fls_Ip_CalculatsDFlashBitSize (void) ;

$if (STD_ON == FTFC_FLS_IP_SYNCRONIZE CACHE)
static void Ftfc Fls SynchronizeCache (uint32 address, uint32 length);
fendif

//#define FLS STOP_SEC_CODE // commented by easyDSP
#define FLS STOP_SEC RAMCODE // added by easyDSP
Tinclude "Fls_MemMap.h"

Third, again in the file Ftfc_Fls_Ip.c, find the location of Ftfc_Fls_Ip_SectorErase function definition,
and disable Ftfc_Fls_Ip_SectorErasePreCheck function.

Ftfc_Fls Ip StatusType Ftfc Fls Ip SectorErase(uint32 u32SectorStartAddress)
{
Ftfc Fls Ip_ StatusTyps sRetVal;
boolean bAddressValid = FTFC ADDRESS_VALID(u32SectorStartAddress);
boolean bSsctorfligned = FTFC SECTOR_ALIGNED(u32SectorStartAddress) ;

DEV_ASSERT_FTFC[bAddressValid);
DEV_ASSERT_FTFC[bSectDrAligned);
/* Unused variables */
(void)bhddressValid;
(void)bSectorAligned;

/* Check(if erase suspended is possible) if any ongoing erase suspended and abort it */
eRetVal = Ftfc_Fls_Flash AbortSuspendsd() ;

if (STATUS FTFC_FLS_IF_SUCCESS == =RestVal)
{
/* Pre-check before starting erass operation */
//eRetVal = Ftfc Fls Ip SectorErasePreCheck(u32SectorStartfddress); // commented by easyDSP

In case the Configuration Tool detects the correction of this file and ask to revert it, don't revert it.

STEP 4-2 : Source code correction for easyDSP bootloader of S32K3x

From STEP 3-2, the relavant codes are generated and you can find C40_Ip.h and C40_Ip.c files in the
folder RTD>include and RTD>src respectively.

easyDSP bootloader uses these flash API functions and they should run on the ram, not on the flash.
To make these functions run on the ram :

First, in the file C40_Ip.h, find the location of function declaration, and change like below red boxes.

90

easyDSP help

* @brief
* @details Thi function will initialize c40 module and cle
* @return

* @retval 3TAT i !
* fretval STATUS C4 IP ERROR TIMEOUT Errorx Timeout

C40_Ip_StatusType C40_Ip_Init(const C40_ConfigType * InitConfig);

* @brief Set ynch/Asynch at IP layer base on the bAsynch of HLD

* @details hi function will change C4 Ip Async valu
* @pre The module h to be initialized

void C40_Ip SetAsyncMode (const boolean Async);

ine uint32 C40_Ip_ReadData32 (uint32 Address);
line uintlé C40_Ip ReadDatalé(uint32 Address);
ine uint8 C40_Ip ReadDataB (uint32 Address);

static inline boolean C40_Ip ValidUTestAddress(uint32 Address);
static inline boolean C40_Ip ValidAddress(uint32 Address);

static inline boolean C40_Ip_ValidRangeAddress(uint32 StartAddress,
uint32 Length

)i

In case the Configuration Tool detects the correction of this file and ask to revert it, don't revert it.

STEP 4-3 : Source code correction for easyDSP bootloader of S32M24x

From STEP 3-1, the relavant codes are generated and you can find Ftfc_Fls_Ip.h and Ftfc_Fls_Ip.c files
in the folder RTD>include and RTD>src respectively.

easyDSP bootloader uses these flash API functions and they should run on the ram, not on the flash.
To make these functions run on the ram :

First, in the file Ftfc_Fls_Ip.h, find the location of function declaration, and change like below red boxes.

STEP 4-4 : Source code correction for easyDSP bootloader of S32M27x
91

easyDSP help

From STEP 3-2, the relavant codes are generated and you can find C40_Ip.h and C40_Ip.c files in the
folder RTD>include and RTD>src respectively.

easyDSP bootloader uses these flash API functions and they should run on the ram, not on the flash.
To make these functions run on the ram :

First, in the file C40_Ip.h, find the location of function declaration, and change like below red boxes.

STEP 5 : Calling easyDSP functions

Three files are provided for easyDSP communication and flash programming (easyS32_RTD.h,
easyS32_RTD_comm.c, easyS32_RTD_boot.c). Please include them in your project. You can find them
in the easyDSP installation folder (\source\S32).

In the file of easyS32_RTD.h, you should set some macros. First, the target LPUART channel for

easyDSP. In this example below, it is set as LPUARTO. Second, i n case you use the easyDSP
bootloader to program flash, define EZ_BOOTLOADER_USE as 1.

PR R e R R R o R o o o S

Select UART channel for easyDSP communication
A ke e ke e ke e ke ke e ke ke ke e ke e ke ke e ke ke ke e e b ke ke ke ke e ke ke e ke e ke ke e e ke ke e ke e ke e e e ke ke e ke e e e e ke ke ke e ke ke e e ke ke e e e ke ke e e ke
fdefine EZ UART CH 0 /{ LPUARTO for =asyDSFE
— — —
J ke ke e e e e e ke e ke ke e e ke e ke ke e e e e e e e ke ke ke ke e e ke e ke e ke ke e e ke ke e ke e ke e e e ke ke e ke e e e e e ke ke e ke e e e ke ke ke ke e ke ke e e ke ok
In case you use the boot loader provided by =asyDSP to program f£lash,
defins EZ BOOTLORADER USE as 1. Otherwiss, define as 0.

Ak ke ke e ke e ke ke e ok ke b ke ke b ke b e ke ke ke ke ke b e b e b ke ke b e ke e b ke ke ke ke ke e ke e ke e ke ke ke b e b b ke ke ke ke ke ke e b b ke ke e b ke b e ke ke ke ke ke

fdefine EZ BOOTLOARDER USE 1

Please include easyS32_RTD.h in the main.c. And in the main(), call easyDSP_init() after the
initialization of MCU. In the easyDSP_init() function, all necessary setting for easyDSP monitoring are
done.

Note that the clock, pins and interrupt should be set properly for easyDSP monitoring.

In case you use easyDSP for flash programming, call easyDSP_boot() right after setting of clock and

92

easyDSP help

int main(void)

/ Init clock
Clock_Ip_. lnlttsulcck Ip aClockConfig[O]) ;
defined (FEATU " HAS SPLL CLK)
// Busy wait until the System PLL is locked
whlla (CAOPK IF PLL LOCKED I= Clock _Ip GetPllstatus()) ;
Plobk_Ip_D15t11butePlltlJ

$endif

'/ Initialize all pins in case of S32K1
Port Ci_ Port Ip Inlt(NUM OF CONFIGURED PINSO, g pin mux InitConfigArr0);

f Initialize all pins in case of S32K3
Siul2_ Port_Ip_Init (NUM_OF_CONFIGURED_PINSO, g_pin_mux_InitConfigArr0) ;

$if EZ_BOOTLOADER_USE
/ Right after clock and pin setting, call easyDSP boot () to enable flash programming
easyDSP_boot () ;
/ Initialize IRQs
Intctrl Ip Init(&IntCtrlcConfig 0);
IntCtrl_Ip ConfigIrgRouting(&intRouteConfig);
/ reset of initial setting
~all syDSP_init() ¢t asyDSP monitoring
easyDSP 1n1t<],
/! loop forever
while(l)
{
}
}

STEP 6 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling
time in the same folder of output file (for example, *.elf) with same file name. The hex file extension
could be either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it
for flash programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with
extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time. Please refer
to the setting of S32DS below.

93

easyDSP help

Properties for 532K118_Blinky_Test o
type filter text Settings - - i
> Resource
Builders .
« C/C++ Build Configuration: Debug_FLASH [Active | ~ | Manage Configurations..

Build Variables

Environment 3
® Tool Settings # Build Steps Build Artifact Binary Parsers @ Error Parsers

Loaging

Settings (# Cross Settings Prefix arm-none-eabi-

Tool Chain Editor iy

(2 Target Processor
Path ${532DS_K1_ARM32_TOOLCHAIN_DIR} Browse...
> CfC++ General 1 Standard S32DS C Compiler

EmbSys Register View 3 Dialect Suffix
Project Natures (# Preprocessar C compiler gee
Project References & Includes

Run/Debug Settings Hex/Bin converter objcopy

532 Configuration Tor

(& Optimization
2 Debugging Listing generator objdump

SDKs = i
&2 Warnings Size command size
Task Tags (& Miscellaneous .
> Validation « % Standard S3205 C Linker Build command make
& General Remove command rm -rf
& Libraries Create flash image
(& Miscellaneous [T Create extended listing
Properties for $32K118_Blinky_Test]
type filter text Settings M
> Resource
Builders .
« C/C++ Build Configuration: Debug FLASH [Active] ~ Manage Configurations...

Build Variables

Environment 3
® Tool Settings _# Build Steps Build Artifact Binary Parsers @ Error Parsers

Logging
Settings o # Cross Settings Output file format (-0} Intel HEX ¥
Toal Chain Editor (@ Target Processor

() section: - text
() Section: -j .data
Other sections (-]) &

~

C/C++ General v B Standard $32DS C Compiler
EmbSys Register View 2 Dialect

Project Natures (2 Preprocessor
Project References & Includes
Run/Debug Settings
532 Configuration Tor

Optimization
% Debugging

SDKs £ Warnings
Tas%(Tags # Miscellaneous
> Validation ~ i Standard $32DS C Linker

General
(2 Libraries
Miscellaneous
(# Shared Library Settings
(& Link Order

~ & Standard 532DS Assembler
2 General
(&2 Preprocessor
(# Debugging

~ & Standard 532DS Create Flash Image
(2 General

2. For easyDSP monitoring, the debug information should be included in the output file (for example,
*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded. For example, in S32DS, no check in the check box in the linker option.

[] Remove unused sections (-Xlinker --gc-sections)

STEP 7 : Limitation of easyDSP bootloader

1. To program flash, the bootloader should be provided since there is no ROM bootloader in this MCU.
The bootloader easyDSP provides is the function (name : easyDSP_boot) and it resides in the user
program. Therefore it can program flash only when it is already programmed in the flash. In case flash
is empty or flash doesn't have easyDSP bootloader, you can't enter into the bootloader and will see the
message below. In this case, you have to use the debugger to program flash. And in same principle,
you have to use debugger to program easyDSP bootloader into flash at the beginning.

94

easyDSP help

[easyDSP x

l Bootloader was not entered !
-

2. easyD'S'P bootloader runs on RAM and it uses some RAM memory space. It is about 2.4K bytes for
S32K1, 4.8K bytes for S32K3 at the optimization option -01.

7.4 AM263x
7.4.1 AM263x software

STEP 1 : Core selection

MCU cores are classified with 4 types in terms of easyDSP.

Yellow core : core that easyDSP pod is connected to and easyDSP communicates with
Orange core : core that easyDSP pod is not connected to but easyDSP communicates with
Blue core : core that easyDSP doesn't communicate with

Gray core : core that doesn't run

Connected to | Communicated Running

easyDSP pod | with easyDSP core
core Yes Yes Yes
core Mo Yes Yes
core Mo Mo Yes
core Mo Mo No

AM263x has max 4 cores. Please choose core type either yellow or orange core based on your
application. Any core of AM263x could be yellow or orange core.

Since blue and gray core has no operation with easyDSP, no easyDSP related setting is required for
them.

Together with data cache usage, several cases are available as below.

Case l:

It is the case that easyDSP monitors multi cores (core a and b) and at least one of them uses data
cache and IPC RPMessage is usable for core to core communication.

easyDSP pod is connected to core a via UARTO, the variable of core a is accessed by core a.

To avoid cache coherence issue, the variable (actually its memory location) of core b is accessed by
core b via core to core communication by IPC RPMessage. Please refer to the arrow for data flow

95

easyDSP help

between easyDSP and cores.

Case 1 : multi cores monitoring
+ data cache enabled either core a or core b

+ IPC RPMessage usable Memory
D§ M ;
) emary for
easyDSP project <d—p| easyDSF pod |-d—-hv| UARTO |-d—b-| corea |-
* out file for core a core a
* out file for core b A
* out file for core ¢]
| IPC RPMessage |
A
V| D&
» _ | Memary for
EIRD |y core b
Memory for

core c core ¢

core d

gl B

Case 2:

In the case 1 but IPC RPMessage is not usable, easyDSP pod should be connected to each core.

Case 2 : multi cores monitoring
+ data cache enabled either core e or core f
+IPC RPMessage not usable

Memory

DS
easyDSP project | easyDSP pod ‘++‘ UARTD |-—-‘ coree [«
*.out file for core e

*.out file for core f
* out file for core ¢

Memory for
-
core e

D%

DSP pod UARTn ; Memory for
| easy po - - core -} -
easyDSP project (n¥# 0) core f

*.out file for core f

Memory for

corec core ¢

core d

Case 3 :

It is the case that easyDSP monitors multi cores and data cache is disabled in these cores.
All the variables (and their memory location) are accessed by the core easyDSP pod is connected to.

96

easyDSP help

Case 3 : multi cores monitoring
+ data cache disabled both core g and core h Memory
] Memory for
easyDSP project 49| easyDSP pod ‘i—-b—| UARTO ‘*I—Ir‘ core g .
* put file for core g core g
= gut file for core h
*.out file for core c
\ Memory for
Memory for

Case 4 :

It is the case that easyDSP monitors single core. In this case, we don't care whether the data cache is
enabled or not.

Case 4 : single core monitoring
Memory
- | Memory for
easyDSP project > easyDSP pod ‘1——" UARTO ‘q—r‘ corei [= :
* out file for core i | core 1
*.out file for core j
* put file for core ©
IMemory for
Memory for

STEP 2 : SysConfig setting

easyDSP uses the code generated by SysConfig. Below figures are made based on SysConfig 1.13.0.

Since easyDSP communicates with MCU via UARTO, please disable 'Debug Log > Enable UART Log' or
use another UART than UARTO for it.

= T| DRIVER PORTIMG LAYER (...
Debug Log &

Clock o

I Debug Log Q Enable Error Log Zone
MPU ARMVY Q@ Enable Warning Log Zone
RAT @ Enable Info Log Zone H
TIMER (31 Enable CCS L

- TIDRIVERS (23) nable L= Log

ADC G‘ Enable Memaory Log
BOOTLOADER ® | Enable UART Log L]
CMPSS ® Enable Shared Memory Log Writer
DAC G' Enable Shared Memaory Log Reader
CrAD]

97

easyDSP help

UART related setting is required for all the cores easyDSP pod is connected to, that is, yellow cores.
The name of UART module should be 'EZDSP_UART'. The baudrate is selectable but it should be same
to that of easyDSP project setting. The data format should be 8bit data, one stop bit and no parity bit.
The priority of UART interrupt should be as low as possible such as 15. TX and RX pins are that of
UARTO MUXMODE 0. Exceptionally, UART of core f in STEP1 could be other UART than UARTO. Please
check below for details.

+ TI DRIVER PORTING LAYER (DPL) (5)

Clock (/] Global Parameters Settings that affect all instances -
Debug Log S
PU AR ©O© UART(1Awe)
RAT ®
TIMER ® I @ EZDSP_UART]
~ TI DRIVERS (23)
MName EZDSP_UART
ADC @
BOOTLOADER @ Operational Mode 16 -
CMPSS ® Baudrate 115200
DAC @ Clock Freq 48000000
ECAP ® Data Length 8-bit -
EDMA :
\ o Stop Bit 1-bit -
EPWM @
EQEP @ Parity Type None v
FSI_RX ® Enable Hardware Flow Contro O
FSITX ® Transfer Mode Interrupt Mode -
GPIO 0 @ Interrupt Priority 15
12C ®)]
RX Trigger Level] -
IPC ®
LIN @ TX Trigger Level 1 -
MCAN ©) Read Transfer Mode Blocking -
MCSPI ® Read Transfer Callback NULL
MPU FIREWALL ® Write Transfer Mode Blocking M
PRU (ICSS) ®)
Write Transfer Callback MULL
QSPI]
RTI @ Read Return Mode Full -
SDFM @ I UART Instance UARTO &
I UART IO Pull Up/Down Slew Rate
) .) /
woT ® Signals 14 Fins PulUp ~ High ~
~ TIBOARD DRIVERS (4) UART RX Pin(UARTO_RXD) AT ~ @ Pulup ~ High ~
EEPROM @ UART TX Pin(UARTO_TXD) A v ﬁ Pull Up ~ High ud
ETHPHY & —_—

IPC setting is required for all the cores using IPC RPMessage (core a and b in STEP1).

'IPC Notify + IPC RP Message' should be used. And 'RP Message Number of Buffers' should be min.1
and 'RP Message Buffer Size' should be min 64. They are increased in case IPC RPMessage is also used
for other purpose than easyDSP. Also no cache should be used for the shared buffer location (memory
16KB from 0x72000000).

98

easyDSP help

TI DRIVER PORTING LAYER (... —

~ TIDRIVERS (23)
ADC ® RSFSSO0 Core 0 (se2lf) PC Natify + IPC RP Message
BOOTLOADER @® RSFSS0 Core 1 IPC Notify + IPC RP Message -
CMPSS ® R5FSS1 Core 0 IPC Notify + IPC RP Message -
DAC ®

R5F351 Core 1 IPC Notify + IPC RP Message -
ECAP @ ore fy g
EDMA @ RP Message Number of Buffers 1 hd
EPWM ® RF Message Buffer Size (Bytes) 64 hd
EQEP @® RP Message Shared Memory (Bytes)
FSI_RX ®
FSI_TX ® Other Dependencies ~
GPID ®
12c ®
| ec o

= TIDRIVER PORTING LAYER (...
Clock (/] Global Parameters Settings that affect all instances ~
Debug Log (/]

| MPU ARMY7 s @ ® MPU ARMV7 (7 of 16 Added) @

RAT ®
TIMER @ & CONFIG_MPU_REGIOND [u]

~ TIDRIVERS (23) & CONFIG_MPU_REGION1 o
ADC ®
BOOTLOADER ® (& COMFIG_MPU_REGION2 o
CMPSS ® 4
DAC ® & CONFIG_MPU_REGION3 (]
ECAP ® @) CONFIG_MPU_REGION4 o
EDMA ®
EPWM @ & CONFIG_MPU_REGIONS o
EQEP ©)
FSI_RX ©) Name CONFIG_MPU_REGIONS
FSI_TX ® Region Start Address (hex) 072000000
GFIO @ Region Size (bytes) 16 KB -
12c ® o i
IPC) Access Permissions Supervisor RD+WR, User RD+WR hd
LIN @ Region Attributes Mon Cached A
MCAN @ Allow Code Execution I:I
MCSPI @ Sub-Region Disable Mark (hex) 0x0

'Supervion RD+WR' is required for the memory area that easyDSP can access so that easyDSP
reads/writes the memory location.

+ TIDRIVER PORTING LAYER (DPL) (5)

Clock] Global Parameters Settings that affect all instances ~
Debug Log (]
| MPU ARMYT 416 @ @ MPU ARMV7 (4 of 16 Added) @

RAT ®
TIMER @ & CONFIG_MPU_REGIOND O

~ TIDRIVERS (23) & CONFIG_MPU_REGION1 o
ADC ®
BOOTLOADER ® @ CONFIG_MPU_REGIONZ O
CMPSS ® -
DAC @ I & CONFIG_MPU_REGION3 O
ECAP @ Name CONFIG_MPU_REGION3
EDMA (]) .

Region Start Address (hex) 0x70000000
EPWM ®
EQEP @ Region Size (bytes) 2 MB -
FSI_RX ® I Access Permissions Supervisor RD+WR, User BLOCK -
FSLTX ® Region Attributes Cached -
GPID @ Allow Code Execution
12¢c ® -
Sub-Region Disable Mark (hex) 0x0

IPC ®

STEP 3 : easyDSP project and MCU project

According to STEP1, easyDSP project should be generated to all the yellow cores, and user MCU
project should be modified for all the yellow and orange cores.

99

easyDSP help

For the yellow and orage cores, please include easyDSP header and source file (easyAM_v*.*.h,
easyAM_v*.*.c) into user MCU project. The suffix of file name will different by its version. You can find
these file in the folder easyDSP is installed (\source\AM2x). And set the #define directives based on
your application.

FEELETEES TR TEET AT fid i iriiiiddifidifrififddifrdiiiddiridifiddiifddiidrifiiddfiridifiidfifeiis
/f Specify whether =asyDSP pod is connected to this core

// Define 1 if easyDSP pod is connected to this core

ff Define 0 if easyDSP pod is not connected to this core

FEALETEE LTI EET T iT i i irdiiiddiiidiiridifddiirididddifidifiddidfddiidriiirdiifridifidiiiresis
#define EASYDSP_POD IS CONNECTED TO THIS CORE 1

FEEEEEEEE AT T T iii i riiiiiiiiridirddirddiridiriidiifdddiisddiiiddiifddiirdifirifiriiiiisiss
// Specify whether easyDSP communicates with single core or multi cores

/{ Define 1 if easyDSP communicates with multi cores

J/ Define 0 if =asyDSP communicates with =zingle core

FEELETEES TR TEET AT fid i iriiiiddifidifrififddifrdiiiddiridifiddiifddiidrifiiddfiridifiidfifeiis
#define EASYDSP IS5 COMMUNICATING WITH MULTI CORES 1

FEFEEEFEE AT E T AT E T E T T EFEF R F T A E A F i F i iF i i idi i riiiriiiridirrdifrddirsfireifisrriis
// If easyDSP communicates with multi cores, Specify data cache is enabled or not in that cores

S/ Define 1 if data cache iz enakbled in the at least one core £asyD3P communicates with

// Define 0 if data cache is disabled in all the cores that easyDS5P communicates with

FEEEEEEEE AT T T iii i riiiiiiiiridirddirddiridiriidiifdddiisddiiiddiifddiirdifirifiriiiiisiss
#if EASYDSP IS COMMUNICATING WITH MULTI CORES

#define D_CA(IS _ENABLED 1

$endif

FEFEEEFEE ST ES A E ST AT TTE AT T R TE T FE TS E S TAF ST i T e T E AT i F i i i i ri i i ridiirrdirrdiirdfiriiriiriss
// If easyDSP communicates with multi cores with data cache enabled, Specify IPC RPMessage end point
f/ It should range from O to &3

FEALETEE LTI EET T iT i i irdiiiddiiidiiridifddiirididddifidifiddidfddiidriiirdiifridifidiiiresis
#if EASYDSP_ IS5 COMMUNICATING WITH MULTI CORES
#if D CACHE IS

#define MAIN |
#define REMOTE _
#endif

$endif

_END_PT (121
E END PT (13U)
And call easyDSP_.init() function in the proper location after some initialization functions.

#include "easyRM w*.%.h"
int main()}

i
System init():
Board init():
Drivers open():
Board driversOpen():
easyD5SP_init():

|

Below is the detailed explanation by cases.

Case 1:

If core a, b, cand d are CPU1, 2, 3 and 4 respectively, the easyDSP project is set as below.
The output files of all the running cores are registered. And CPU1 and CPU2 are checked as cores
communicating with easyDSP.

100

easyDSP help

Project Settings *

Basic l Hardware] Miscellaneous]

MCu
Vendor T -
Series | AM263x Sitara =]
Part number | AM2634 |
Grade |Grade M |
Output File(s) Communication

with easyD5SP

CPUT(R5_0_0) | C:MitempWcpulout v
CPUZ (R5_0_1) | [C:¥tempcpuZ.out
CPU3(R5_1_0) | C:¥temp®cpul.out
CPU4(R5_1_1)

i

IT' Cancel

The setting in the header file as below. Also two end points (m and n) should be set for IPC RPMessage.

Yellow core Orange core
EASYDSP_POD_IS_CONNECTED_TO_THIS_CO [EASYDSP_POD_IS_CONNECTED_TO_THIS_CO
setting |RE 1t RE =0
i 9 EASYDSP_IS_COMMUNICATING_WITH_MULTI |EASYDSP_IS_COMMUNICATING_WITH_MULTI
casvAM _CORES =1 _CORES =1
h YRR D_CACHE_IS_ENABLED =1 D_CACHE_IS_ENABLED =1
MAIN_CORE_SERVICE_END_PT = m MAIN_CORE_SERVICE_END_PT = m
REMOTE_CORE_SERVICE_END_PT = n REMOTE_CORE_SERVICE_END_PT = n
Case 2 :

If core e, f, cand d are CPU1, 2, 3 and 4 respectively, the easyDSP project for core e is set as below.
Project Settings *

Basic l Hardware] Miscellaneous]

MCu
Vendor T -
Series | AM263x Sitara =]
Part number | AM2634 |
Grade |Grade M |
Output File(s) Communication

with easyD5SP

CPUT(R5_0_0) | C:MtempWcpulout ™
CPUZ (R5_0_1) | [C:¥tempcpuZ.out

=
CPU3(R5_1_0) | C:¥temptcpul.out -
=

CPU4 (R5_1_1)

IT' Cancel

101

easyDSP help

the easyDSP project for core f is set as below.
Project Settings >

Basic l Hardware] Miscellaneous l

Mcu
Vendar Tl -
Series | AM263x Sitara ~|
Part number | AM2634 |
Grade |Grade M ~]
Output File(s) i?t:rg:zlc[]agu;n

CPUT (R5_0_0) r
CPUZ(R5.0_1) | C:¥tempcpuZ.out

CPU3 (R5_1_0O)

CPU4(R5_1_1)

i

0K | Cancel |

To do RAM booting and flash programming, easyDSP pod should be connected to the core via UARTO.
Therefore register all the output files of running cores to easyDSP project of core e (connected to
easyDSP pod via UARTO) so that easyDSP project of core e can perform RAM booting and flash
programming.

On the other hand, don't perform RAM boooting and flash programming in the easyDSP project of core
f.

In case that user program of core f is updated and downloaded to core f by easyDSP project of core e,
the easyDSP project of core f needs to reload its output file to update its symbolic information.

This is done automatically if both easyDSP projects (core e and core f) are running in the single PC.
Then easyDSP project of core f shows the message box below.

The output file is now reloaded as requested by other
! v easyD5sP project!

If both easyDSP projects run in the separate PC, then user need to do manually by executing the menu
'MCU > Reload *.out' in the easyDSP project of core f.

The setting in the header file as below.

Yellow core

setting in [EASYDSP_POD_IS_CONNECTED_TO_THIS_CORE =1
easyAM.h |EASYDSP_IS_COMMUNICATING_WITH_MULTI_CORES = 0

Case 3:

If core g, h, cand d are CPU1, 2, 3 and 4 respectively, the easyDSP project for core g is set as below.
The output files of all the running cores are registered. And CPU1 and CPU2 are checked as cores
communicating with easyDSP.

102

easyDSP help

Project Settings *

Basic l Hardware] Miscellaneous]

MCu
Vendor T -
Series | AM263x Sitara =]
Part number | AM2634 |
Grade |Grade M |
Output File(s) Communication

with easyD5SP

CPUT(R5_0_0) | C:MitempWcpulout ™

CPUZ (R5_0_1) | [C:¥tempcpuZ.out v
CPU3(R5_1_0) | C:¥temp®cpul.out r
=

CPU4 (R5_1_1)

QK | Cancel

The setting in the header file as below.

Yellow core

EASYDSP_POD_IS_CONNECTED_TO_THIS_CORE =1
EASYDSP_IS_COMMUNICATING_WITH_MULTI_CORES =1
D_CACHE_IS_ENABLED = 0

setting in
easyAM.h

Case 4 :

If core i, j, cand d are CPU 1, 2, 3 and 4 respectively, the easyDSP project for core i is set as below.
The output files of all the running cores are registered. And CPU1 is checked as core communicating
with easyDSP.

Project Settings *

Basic l Hardware] Miscellaneous]

MCU

Vendor
Series
Part number

Grade

Output File(s)

Tl -
| AM263x Sitara
| AM2634
|Grade M

Led Led Lo

CPUT(R5_0_0) | C:MitempWcpulout
CPUZ (R5_0_1) | [C:¥tempcpu.out

CPU3(R5_1_0) | C:¥tempcpu3d.out

CPU4 (R5_1_1)

Communication
with easyD5SP

I~

-
-
-

OK | Cancel

The setting in the header file as below.

Yellow core

setting in

EASYDSP_POD_IS_CONNECTED_TO_THIS_CORE = 1

103

easyDSP help

easyAM.h [EASYDSP_IS_COMMUNICATING_WITH_MULTI_CORES =0

STEP 4 : linker.cmd

In the linker.cmd file, the start address of RAM should be same to or larger than 0x7004.0000 for all
cores, as it is in the TI example project.

HMEMORY
i

CCEAM 1 CRIGIN = , LENGTH =
}

STEP 5 : Variable name

Note that the variable name in the easyDSP is changed when easyDSP is communicating with multi
cores.

This is not to mix the variable name from different cores. The variable name 'var' of CPUx (x= 1,2,3 or
4) is changed to 'x:var'. < /FONT>

STEP 6 : IDE setting

1. Make sure that rprc file (*.rprc) is generated in every compilation with the same name
and in the same folder to the output file. This is the default setting of TI CCS. rprc file is used for
RAM booting and flash programming.

2. The debugging information should be included in the output file. This is the default setting of TI CCS.
Otherwise, easyDSP can not recognize the variable.

3. The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker option. If necessary, you can set the linker option so that the unused

104

easyDSP help

variables are not excluded.

BP Properties for empty_am263x-lp_rfss0-0_nortes_ti-arm-clang m} x
|t}-‘pef|lt&|‘text | Miscell =4 -~ 8
~ Build ~
SysConfig
~ Arm Compiler Configuration: | Debug [Active] ~ | | Manage Configurations...

Processor Options
Optimization
Include Options
Predefined Symbols
~ Advanced Options [[] Disable conditional linking and ignore .clink (--disable_clink, -j)

Aggressively reduce size of the DWARF information (--compress_dwarf) ~

Control Optiens
Advanced Debug Option
Language Options Add <function> to preferred placement order list (--preferred_order) LS|

Select trampoline minimization algorithm (--minimize_trampolines) ~

Parser Preprocessing Opl
Diagnostic Options
Runtime Maodel Options
Unusual Runtime Model
Optimization Informatiol
Instrumentation Options
Command Files
Miscellanecus
w Arm Linker
Basic Options
File Search Path
~ Advanced Options

Command File Preproce:
Diagnostics
Linker Qutput
Symbol Management
Runtime Envirenment
Miscellaneous Strict cempatibility checking (--strict_compatibility) v

Linker optimization

Minimum space between non-adjacent trampolines (—-trampeline_min_spacing)
Arm Hex Utility [Disabled]

Debug Eliminate sections not needed in the executable (--unused_section_elimination) off ~
v
a 5 Zero initialize ELF uninitialized sections (--zero_init) e
)
\f) Show advanced settings Apply and Close Cancel

7.4.2 AM263x hardware

Connection to easyDSP

easyDSP uses 'UART' boot mode for RAM booting and flash programming, and uses 'QSPI(4S) - Quad
Read Mode' boot to run user program in the flash.

Boot Mode SOP3 SOP2 SOP1 SOPO
QSPI (4S) - Quad Read Mode 0 0 0 0
UART 0 0 0 1
QSPI (1S) - Single Read Mode 0 0 1 0
QSPI (4S) - Quad Read UART Fallback Mode 0 1 0 0

QSPI (1S) - Single Read UART Fallback Mode 0 1 0 1

DevBoot 1 0 1 1

According to the table above, SOP1, SOP2 and SOP3 pins should be low while SOPO pin is connected to
BOOT pin of easyDSP header so that easyDSP can control MCU boot mode.

It is highly recommended to connect RX and TX pins of easyDSP header to MCU UARTO (MUXMODE 0).
Otherwise RAM booting and flash programming is not supported.

In case RX and TX pins of easyDSP header are connected to UART other than UARTO (MUXMODE 0),
don't connect BOOT and /RESET pin of easyDSP header.

105

easyDSP help

The flash should be connected to MCU QSPIO and its 'Sector Erase' command should work with 64kB
block such as part number S25FL128SAGNFI000 which is used in TI evaluation board.
#4 pin of easyDSP header is connected to MCU VDDS33.

VDDS33

% 20K
AM263x

VDDS33 easyDSP Header
O 2 1 RX
L 29 2 1Py T UARTO_RXD (MUXMODE 0)
— 4 3 PE—— UARTO_TXD (MUXMODE 0)
g9 6 5 P77 BOOT
<2 8 7P
104 1o g 2 PORz
20K 20K
—M\ ANy SOP0/ QSPI0_DO
SOP1/QSPI0_D1
SOP2
SOP3
N QsPI
e QSPI0_D2
emory QSPI0_D3
QSPI0_CSn0
QSPI0_CLK
[

Note :

- 25MHz XTAL clock source is required.

- MCU captures SOPx pin status ~1ms after PORz release and decides boot mode. So, kindly make
sure there would be no signal output from any circuitry connected to SOPx pin ~2ms after PORz
release.

- TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP pod.

- In case there is a reset IC between easyDSP /RESET and MCU PORz, it should transfer easyDSP
/RESET signal to MCU within 0.5sec.

easyDSP connection to AM263x Launchpad

The manual work to connect easyDSP to TI AM263x Launchpad is shown below. Note that all the
switches of SW1 should be ON and #2 pin of U27 should be detached from PCB.

106

easydsp header : /RESET

easyDSP help

PORYZ Push-Button and Test Automation

VSYS_3V3
&
TA Header low enable the p%el
FET, shoming signal to GND.
R177
10.0k
swz2 . PORZ PE 1_J}\~a AM?263 PORZ_PB > AM263_PORZ_PB
2 r4
- ~ | - -
0 U34A
) -
“ VY5 _3V3
TA_PORZ

GND

BF_PORZY EPF PORZ Ri80,.. 0

i lat VSYS 3V3
™= FiRLMLE401TRPEF

SNT4LVCIG1TDSF2

wvs svs DIP Switch SOP Select

easydsp header : BOOT
SRIT
100k
SWi
SOBR) 5W 8 :;\“c i
SOFL_SW 7| o~ |2
5082 5W [::l““‘l: 3 .
SOP3_SW ! 5] el 4 .
4161311602804
+R22 LRIZ MR24 R25
S50P[3:0 itch d iption: < < =
-sﬂtm]";?'bssnfﬂm 210k 310k 310k 310k
- Switch "on" S0Px low
- 50P[xy]: TBD -
@D
all SW on = SOPx low
‘ ‘ u2a
[o
easyDSP header : RX : : vecz |8
note) #2 pin of U27 . M [l
should be disconnected | || oums (E
from PCB ; ; anpz2 [
[
DR
uz2r
L veet i1 veca |8
AM?63 UARTO BXD 30 [P R
AMIG3 UARTD TXD E-'___ INE i i ouUTE g | .
1
lewot1 || ooz |3
[
easyDSP 1
header: TX | = : L
GND =
GND_XD5

107

easyDSP help

7.5 TMAC

TMA4C setting

STEP 1 : Hardware

easyDSP uses MCU's ROM boot loader to access the flash memory. So the UARTO channel
(PAQ/PA1) that is used in the ROM boot loader should be used for easyDSP.
Otherwise, easyDSP can support only monitoring, not flash programming. Also the source file
easyTM4C.c should be modified accordingly by you.
PXn pin acts as a boot pin and you can select it in the easyTM4C.h file. But caution should be taken
when selecting boot pin :

1. PC0-3, PD7 and PE7 can't be used for TM4C129x MCU

2. PC0-3, PD7 and PF7 can't be used for TM4C123x MCU

3. In case other circuitry is connected to this pin than easyDSP BOOT pin, this circuit should not

issue the output signal until ~1sec after MUC reset release.
VDD

20K

VoD TMAC
2 i RX
1) 2 1 P3 T UDRx (PAD)
B4 PR UOTx (PAT)
}(—50 & L --lr_}< 800T
oo & TPy === = PXn
10 3 — -RET
= 232y DSP Header

EE{)K J___ GND

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU -RST, it should transfer easyDSP
/RESET signal to MCU -RST within 0.5sec.

- TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP pod.

STEP 2 : Modification of easyDSP header file

Two files are provided for easyDSP communication (easyTM4C.h and easyTM4C.c). Please include them
in your project. You can find them in the easyDSP installation folder (\source\TM4C).

In the file, please set a target MCU, MCU clock, baudrate of easyDSP communication and boot pin. The
baud rate should be same to that of easyDSP project.

108

easyDSP help

FIELTITLITTTI I TIII TS TR T I i S d i d i i i i iddiddiidiidiiididididiiddiidiridiridy
// step 1 : set target MCU

rr if TM4C12%x is used, set EZ_USE TM4Cl2%5x as 1

rr if TM4C123x is used, set EZ _USE TM4Cl123x as 1

LIELTIESSTTTL T TE I TT AT Ti i i i i i diiddidiiidiidddsidiiidiiidididsiddiidiiidirids
fdefine EZ USE TM4C129x 0

fdefine EZ USE TM4C123x 1

LSS id it it it it it it idiririrsy
// =step 2 : set the system clock freguency

i/ for example, 120000000L for TM4ClZ29x, B80000000L for TM4ClZix
SIS
fdefine EZ SYS CLE_FREQ 80000000

AT SIS FE i i iiddiiriid i riddididriiddiddiiidddiiidiisdy
// step 3 : set the baud rate for UART communication with easyDSE
rf it should be same to the baudrate of easyDSP project

LIS TGS PSSP i iidddidddidididdddiddiddiidiiids
fdefine EZ EUAD RATE 230400

SIS idididididisdy
f// step 4 : boot pin (PXn) selection

Iy don'"t use PC0-3, PD7, PE7 for TM4C12%9x
Iy don'"t use PC0-3, PD7, PF0 for TM4C123x
£ below example sets PBES as a boot pin

SELLETISLTL TSI T PP i i i i ii i i it iddidiriiddiiida it iddididiidiiiiiisy
fdefine EZ_SYSCTL PERIPH GPIOX SYSCTL PERTIPH GPICE

fdefine EZ_GPIC_PORTX BASE GEIC_FORTB_BASE

fdefine EZ_GPIO_PIN n GETIC_PIN 5

STEP 3 : Calling easyDSP functions

Please include easyTM4C.h in the main.c. And in the main(), call easyDSP_boot() very begining and
call easyDSP_init() after the initialization of MCU.

In the easyDSP_boot() function, it is decided which code will be executed, either user program in the
flash or ROM boot loader, depending on the status of boot pin. In case you don't use flash
programming by easyDSP, no need for this function.

In the easyDSP_init() function, all necessary setting for easyDSP monitoring are done.

109

easyDSP help
#include "easyTM4C.h"

int main(void)

i
// the wery beginning, call easyDSP koot () to enable ROM boot loader if reguired
easyDSP_boot () ;
initial setting
// call easyDSP _init() to enable easyDSP monitoring
easyDSP_inic () ;
'/ loop forewver
while(l)
i
}
}

STEP 4 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling
time in the same folder of output file (ex *.out) with same file name. The hex file extension could be
either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash
programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with
extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time.

Please refer to the setting of CCS. Especially for CCS, memory width should be 8.

BP Properties for TM4C129_Blinky] *
[type filter text | | Arm Hex Utility G}
Rescurce
CCS General
w CCS Build Cenfiguration: |Debug [Active] ~ | | Manage Configurations...

Arm Compiler
Armm Linker
~ Arm Hex Utility

General Options Enable "Arm Hex Utility'

110

easyDSP help

B0 Properties for TM4C129_Blinky [m] X
|t“:"l35f'|t5"text | Qutput Format Options L= - 8
Resource
CC5 General
~ CCS5Build Configuration: | Debug [Active] ~ | | Manage Configurations...

Arm Compiler
Arm Linker
~ Arm Hex Utility
General Options
Diagnostics Options
Boot Table Options
Output Format Options

Output format Intel hex (--intel, -i) ~

BP Properties for TM4C129_Blinky] *

|t}-‘pef|lt&rtext | G | Options Le=1E 4 -~ 8

Resource
CC5 General
+ CCSBuild Configuration: | Debug [Active] ~ | | Manage Configurations...
Arm Compiler
Armn Linker
~ Arm Hex Utility
General Options
Diagnostics Options Specify CMAC key file name and enable CMAC (--cmac=file) | ‘ @
Boot Table Options
Qutput Fermat Options
Load Image Options Exclude section from hex conversion (--exclude, -exclude=section) {a
Additional Array Fermat Optior
Builders
C/C++ Build
C/C++ General

[] Output as bytes rather than target addressing (--byte, -byte)

Specify entrypoint address or symbol name (--entrypoint, -e=addr) |

Debug

Project Matures
Project References
Run/Debug Settings

Specify fill value (—fill, ~fill=val) | |

[Select image mode (--image, -image)
[Dinclude linker fill sections in images (--linkerfill, -linkerfill)

Specify map file name (--map, -map=file) | ‘ =]
Specify mermory width (~-mernwidth, -memwidth=width) E |
Specify cutput file names (--outfile, -o=file) |S{Bu\IdArtifactF\IeBaseNamE}.hex ‘ =

[]Quiet Operation (--quiet, -quiet, -g)
Specify rom width (--romwidth, -remwidth=width) | ‘

< > [Zero based addressing (--zere, -zero, -z)

(?:' Hide advanced settings Apply and Close Cancel

2. For easyDSP monitoring, the debug information should be included in the output file (ex, *.out). And
the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded.

4. To compile inline functions in the easyTM4C.c, plase enables c99 mode in the compiler options if
necessay.

STEP 5 : Other setting

1. To allow easyDSP to access the flash, the protection feature of flash should be disabled so that the
flash may be written, erased, executed or read.
2. EN bit of BOOTCFG register of MCU should be 1. With this, the booting mechanism is decided by
easyDSP_boot() function.
3. easyDSP can perform flash programming only when either all the flash is empty or easyDSP source
file is programmed in the flash.

For the other situation than above, you will face the error message below and you should use

111

easyDSP help

debugger to program flash.
easyDSP X

! Boot loader was not entered !

7.6 MSPMO
MSPMO Setting -

STEP 1 : SysConfig - NONMAIN

easyDSP uses the code generated by SysConfig. Below figures are made based on SysConfig 1.16.1.
At first, you can set the NONMAIN area such as BCR and BSL configuration.
If you use TI factory default, you can skip this step 1. If not, please check below.

First, set the BCR configuration.
Fast Boot Mode is disabled. And BSL is enabled.

+ MSPMO DRIVER LIBRARY (7) p
NONMAIN & = REMOVE ALL
~ SYSTEM (9)

Ei?f o ® Quick Profiles M
GFIO Q@ Debug Security Profiles Security Level 0- No restrictions -
MATHACL ®
NONMAIN Q . . . " . v
s ® Boot Configuration Routine (BCR) Configuration
SYSCTL]
SYSTICK) Debug Security Policy Configuration -
WWDT @®

~ ANALOG (6) SWD Mass Erase and Factory Reset Configuration -~
ADC12 ®
ComMP ® Flash Memory Static Write Protection (SWP) Configuration -
DAC12 ®
GPAMP ® Enable Fast Boot Mode
OPA ® BCR Configuration ID Ol
VREF ® Expected BCR Configuration CRC

~ COMMUNICATIONS (6) Enable BSL
12¢ ® L

Second, set the BSL configuration.

If necessary, set the 32 byte password for entering to bootstrap mode. It's all OxFF by TI factory
default.

BSL Invoke Pin Check should be enabled.

You can use default BSL invoke pin or you can change it to another pin but BSL invoke pin level should
be high in any case.

If necessary, set the UART pin.

Finally enable BSL read out.

112

easyDSP help

Bootstrap Loader (BSL) Configuration e
BSL Access[0] 0xFFFFFFFF
BSL Access1] 0xFFFFFFFF
BSL Access[Z] 0xFFFFFFFF
BSL Access[3] OxFFFFFFFF
BSL Access]4] 0xFFFFFFFF
BSL Access[3] 0xFFFFFFFF
BSL Access[f] 0xFFFFFFFF
BSL Access(7] OXFFFFFFFF
BSL GPIO Inveke Configuration h
Enable BSL Invoke Pin Check
Use Default BSL Invoke Pin O

| BSL Invoke Pin PA1S -
BSL Invoke Pin PINCM A0
ESL Invoke Pin Level High -
BSL UART Pin Configuration h
UART Peripheral UARTD
UART TX Pin FATD v
UART TX Pad Mumber 2
UART TX Mux 2
UART RX Pin PATT v
UART R¥ Pad Number 22
UART R Mux 2
BSL I12C Pin Configuration ~
BSL Plugin Configuration e
BSL Flash Plugin Enable O
Alternate BSL Configuration ™
Use Alternate BSL Configuration |:I

BSL Configuration 1D

BSL App Version 0xFFFFFFFF

BSL Read Out Enable

BSL Security Alert Configuration Ignare security alert -

Expected BSL Configuration CRC 0 7AEDC

Note : Since easyDSP can't program NONMAIN flash memory region (such as BCR and BSL
configuration area), please use the debugger or any other tool to program NONMAIN flash.

STEP 2 : Hardware

As confitured in STEP 1 or by TI factory default, connect BSL_invoke, BSLRX and BSLTX to easyDSP
header.
If you use TI factory default (No change to NONMAIN flash in STEP 1), refer to the target MCU

113

easyDSP help

datasheet to identify pin number of those pins. For instance, BSLRX, BSLTX and BSL_invoke has pin
number 26, 27 and 22 respectively for MSPMOL1306xRHB. For instance, BSLRX, BSLTX
and BSL_invoke has pin number 57, 56 and 11 respectively for MSPM0G3507SPM.

For your information, BSL_RX and BSL_TX belong to UARTO.

VDD
47K
VDD MSPMO
2 1 RX
A 2 1 3 ™ BSLRX (UARTOD_RX)
5 4 3 = BSLTX (UARTO_TX)
* g9 8 5 P73 Boor
>ﬁg a 7 ; RESET BSL invoke
b 10 a - NRST

easyDSP Header VSS

it

Other considerations :

- Direct connection between easyDSP /RESET and MCU NRST.

- RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

- In case pull-up resistor is attached, resistor value should be higher than several k Ohm.

STEP 3 : SysConfig - UART

Since BSL_RX and BSL_TX use UARTO, create UARTO peripheral with the name of 'UART_OQ'.
The target baud rate is selectable but it should be same to that of easyDSP project setting.
The data format should be 8bit data, one stop bit and no parity bit.

FIFO should be enabled with its RX and TX FIFO threshold level as below.

114

easyDSP help

= Type Filter Text ¥ O« & 3 Software » UART @ <> 1‘5} @ :
MSPMO DRIVER LIBRARY (7
~ SYSTEM (9)
Board] I @ UARTO 0o
DMA ®
GPIO O] Name UART_O
MATHACL ® Selected Peripheral UARTO
NONMAIN (]
RTC ® Quick Profiles hd
SYecTL o UART Profil Custom
SYSTICK) romies
WWDT @
w ANALOG (8) Basic Configuration v
ADC12 @
COmP ® UART Initialization Configuration v
DAC12 @
GPAMP @ Clock Source BUSCLK -
OPA @ Clock Divider Divide by 1 -
VREF ® Calculated Clock Source 32.00 MHz
~ COMMUNICATIONS (6) Target Baud Rate 230400
12C
® Calculated Baud Rate 230215.83 A
12C - SMBUS ®
MCAN @ Calculated Error (%) 0.0799
SPl ® Woaord Length 8 bits A
UART ‘O® Parity None -
UART-LIN @® Stop Bits One -
~ TIMERS (&) HW Flow Centrol Disable HW flow control -
TIMER - CAPTURE ®
TIMER - COMPARE ®
TIMER - VM @ Advanced Configuration A
TIMER - QEI ®
TIMER ® UART Mode Normal UART Mode -
Timer Fault @ Communication Direction T and RX -
~ SECURITY (2) Oversampling 16x -
AES
® | Enable FIFOs
TRNG ® .
+ DATA INTEGRITY (1) RX FIFQ Threshold Level RX FIFO contains == 1 entry -
CRC @® Tx FIFO Threshold Level TX FIFO is empty -
~ READ-ONLY (1) Analog Glitch Filter Disabled -
EVENT o Digital Glitch Filter 0

Calculated Digital Glitch Filter

RX Timeout Interrupt Counts 1]

Calculated RX Timeout Interrupt

Enable Internal Loopback |:|
Enable Majority Voting O
Enable MSB First O

Retention Configuration h

Low-Power Register Retention Registers retained
Disable Retention APIs O

Receive and Transmit interrupt should be enabled with the lowest priority level.
It is recommended to have pull-up resistor for TX and RX pins.
Finally as configured in step 1, RX and TX pins are set.

115

Extend Configuration

Enzble Extend Features

Interrupt Configuration

Enable Interrupts

Interrupt Priarity

DMA Configuration @

Configure DMA RX Trigger
Configure DMA TX Trigger

Pin Configuration

TX Fin

Direction
10 Structure

Enable pin configuration

Digital IOMUX Features

Internal Resistor
Invert

Drive Strength Control
High-lmpedance

RX Pin

Direction
10 Structure

Enable pin configuration

Digital IOMUX Features

Internal Resistor
Invert
| Hysteresis Control

Wakeup Logic

PinMux Peripheral and Pin Configuration

LJART Peripheral
RX Pin
TX Pin

Other Dependencies

easyDSP help

Receive Transmit

Level 3 - Lowest

Mone
Mone
W
W
Higt =]
W
Pull-Up Resistor -
Disabled -
High -
Disabled -
W
H ql Drive
W
Pull-Up Resistor -
Disabled -
Disabled -
Disabled -
W
UARTO - B
PA11/57 A0
PA10/56 ~ B
P

116

easyDSP help
STEP 4 : easyDSP source file

Please include driverlib from TI in your project since easyDSP uses it for UART communication.

Two files are provided for easyDSP communication (easyMSPMO0.h, easyMSPMO0.c). Please include them
in your project. You can find them in the easyDSP installation folder (\source\MSPMO0).

Please include easyMSPMO0.h in the main.c. And in the main(), call easyDSP_.init() after the initialization
of MCU.

In the easyDSP_init() function, all the setting for easyDSP monitoring are done.

finclude "easyMSEMO.hL"

int main{void)
{

// initial setting

{// call easyDSP init() to enable =asyDSP monitoring
2asyDSP_init () ;

/f loop forever
while(l)
{

STEP 5 : IDE

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling
time in the same folder of output file (ex *.out) with same file name. The hex file extension could be
either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash
programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with
extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time.

Please refer to the setting of CCS. Especially for CCS, memory width should be 8.

117

easyDSP help

B0 Properties for G3507_Blinky 0 %
|t}"F=Ef”tEftEXt | Output Format Options (=14 - 38
Resource
General
~ Build Configuration: |Debug [Active] ~ | | Manage Configurations...
SysConfig

w Arm Compiler
Processor Options
Optimization
Include Options
Predefined Symbols
Advanced Options
Arm Linker
w Arm Hex Utility
General Options
Diagnostics Options
Boot Table Options
Output Format Options
Load Image Options
Additional Array Format Optior
Arm Objcopy Utility [Disabled]

COutput format Intel hex (--intel, -i) -

Debug

< >

@' Show advanced settings Apply and Close Cancel

B0 Properties for G3507_Blinky O %

|t}"F=Eﬁ|tE"tE><t | General Options = > 2
Resource
General

w Build Configuration: |Debug [Active] ~ | | Manage Configurations...

SysConfig

v Arm Compiler

Processor Options [[] Qutput as bytes rather than target addressing (--byte, -byte)

Optimization
Include Options Specify CMAC key file name and enable CMAC (--cmac) | | @
Predefined Symbols
Advanced Options

Specify entrypoint address or symbol name (--entrypoint, -g) | |

Arm Linker Exclude section from hex conversion (--exclude, -exclude) {a
v Arm Hex Utility

General Options

Diagnastics Options Specify fill value (--fill, -fill) | |

Boot Table Options [Select image mode (--image, -image)

Output Format Options [Include linker fill sections in images (--linkerfill, -linkerfill)

Load Image Options _)

Additional Array Format Optior | SPecify map file name (--map, -map) | | &
Arm Objcopy Utility [Disabled] Specify memaory width (--memwidth, -memwidth) |S |

Debug
Specify output file names (--outfile, -o) |S{BuiIdAr‘tifactFiIeBaseName}.hex | @

[] Quiet Operation (--quiet, -quiet, -q)
Specify rom width (--romwidth, -romwidth) | |

< > [1Zero based addressing (--zero, -zero, -z)

Show advanced settings Apply and Close Cancel

~
@/.

2. For easyDSP monitoring, the debug information should be included in the output file (ex, *.out). And
the option of assembler, compiler and linker should be set accordingly.
3. Depending on compiler's optimization level and linker setting, the unused variables could be
excluded from the debug information and not shown in the easyDSP.

If you like to avoid this, don't use compiler optimization and set the linker option properly. Like
below in case of CCS.

118

easyDSP help

G Properties for G3507_Blinky O ®
|t}"p&ﬁ|t&l’tl’:}<t | Miscellaneous = - E
Rescurce
General
~ Build Configuration: |Debug [Active] ~ | | Manage Configurations...
SysConfig

Arm Compiler
» Arm Linker

Basic Options Aggressively reduce size of the DWARF infermation (--compress_dwarf) ~
File Search Path [Disable conditional linking and ignore .clink (--disable_clink, -j)
» Advanced Options Select trampoline minimization algorithm (--minimize_trampolines) w
Command File Preprocessin
Diagnostics Add <function> to preferred placernent order list (--preferred_order) &
Linker Qutput
Symbel Management
Runtime Environment
Miscellaneous
Linker optimization Strict compatibility checking (--strict_compatibility) w
Arm Hex Utility [Disabled] Minimum space between non-adjacent trampolines (--trampoline_min_spacing) l:l
Arm Objcopy Utility [Disabled]
Debug Eliminate sections not needed in the executable (--unused_section_elimination) off w
a % Zero initialize ELF uninitialized sections (--zero_init) w

':?;' Show advanced settings Apply and Close Cancel

4. In case of CCS, to program NONMAIN memory area of flash, below option should be set.
&g Main Program | & Target| &~ Source| [C] Common

Device | Texas Instruments XDS110 USE Debug Probe/CORTEX_MOP ~

Program/Memory Load Options Reset Configuration

Auto Run and Launch Options Reset target before program load
Misc/Other Options Reset target after program load
IMSPMO Flash Settings
Reset Type
(O Soft reset
(®) Hard reset

Erase Configuration

NWarning: Modifying NOMMAIN incorrectly, or erasing it without programming can permanently lock the devic
See MSPMU documentation for more details

Erase method

(O Erase MAIN memory anly

(®) Erase MAIN and NONMAIN memory (see warning above)

() Erase MAIN and MONMAIN necessary sectors only (see warning above)

(O Erase MAIN memory sectors by range (specify below)

(O Do not erase Flash memory

7.7 PSoC4
7.7.1 PSoC4 software

Single-application bootloader configuration is required for easyDSP to access onchip flash of MCU. In
other configuration, easyDSP can monitor the variables but can not program flash.

Below software setting is explained based on PSoC Creator 4.4.

It is assumed that you are already familiar with bootloader and bootloadable. If not please check the
manual from Infineon.

119

easyDSP help

metadata

Bootloadable
application

Single-app
Bootloader

Single-application
Bootloader

STEP 1 : Bootloader project

Please make a schematic as below by dragging the compoents from component catalog.
And change the name of bootloader component to Bootloader_UART.
You can add other components if necessary (ex, LED).

Booloader UART UART 1
Bootloader UART

Standard

First set the 'Bootloader_UART' component as below capture. Note that 'Wait for command time'

should be more than 2000ms.
If required, you can set the security key.

120

easyDSP help

Configure 'Bootloader_UART ? .
MName: | Bootloader_LUART
General]/-Built—in] q I
Options Optional commands
Communication component: LART_1 e . Get flash size
[] Dual-application bootloader Verify row
Golden image support Erasze row
Auto application switching [] Get row checksum
Copier [] Verify application checksum
Wait for command] 5end data
Wait for command time {ms}): 2000 = [] Sync boctloader
(0 wait forever) Get application status
Bootloader application version: |{b.;1]-|]-|]-|} | [] Get metadata
Packet checksum type: Basic summation “
[] Fast boctloadable application validation
Bootloader application validation
[Security key: 11|/ 22|33 || 44 || 55 || 66
Datashest QK Apply Cancel

Second set the UART component as below capture. Use 'UART Basic' tab as its default. Note that
115200bps, 8bits, one stop and no parity is used.
In '"UART Advanced' tab, buffer size should be changed.

121

easyDSP help

Configure 'UART_1' ?

Name: |UART_

Configuration / UART Basic | UART Advanced | UART Pins | Builtin |

Mode: Standard

Direction: TX+Rx ~

Baud rate (bps): 115200 e Actual baud rate (bps): 117647 G)
Data bits: 2 bits ~

Parity: Mone e

Stop bits: 1 bit w

Cwersampling: 12 =

] Clock from terminal
[] Median fiter
Retry on NACK
Inverting R
[] Enable wakeup from Deep Sleep Mode

Low power receiving

Datashest 0K Apply Cancel

122

easyDSP help

Configure 'UART_1' ? ot
Name: |UART_T
Configuration | UART Basic,/~ UART Advanced | UART Pins | Builtin | q b
Buffers size Imtemupt OMA
R¥ buffer size: 272 = Mane Fi¥ output
THbuffersize: |64 = ®) Intemal TX output
[] Byte mode Exdemal
Imtemupt sources
[] UART dore R FIFD not empty
T¥ FIFO not full [] R FIFO ful
(] T FIFD empty] R¥ FIFO overflow
[] TX FIFD overflow [] B FIFD underflow
[] TX FIFD underflow [] R frame emor
T¥ lost arbitration R¥ parity emor
TX NACK [] R FIFD level
] T FIFD level [] Break detected Brea 11 =
T F :: ﬂ R F :: T
Multiprocessor mode R¥ FIFO drop
Address [hex 2 = On parity emor
Mask: (hes FF = (] On frame emor
Accept matching address in RX FIFO
Flow control
] RTS Faola Active Low RTS FIFQ level: |4 =
[]CTs Pola Active Low
Datashest QK Apply Cancel

Please select UART pins according to your design. In this example, P0.4 and P0.5 are used.

123

easyDSP help

i i Name / Port Pin Lock
2% ==3::H00H
P S EEE=EE == Z 2
= A B A & A a & e 2 g
2
=
BN v=s vCeD
2 |F2m *RES
3 |P2m Fop] | 21
4 |Paz FoE] | 30
5 |r2y zj P[] WWART 14
i D CYBC4245AX1-483 i e
7 |Pa2m i Pop3) | 27
¢ |2 44-TQFP fopz | 2
s |F2m Fop) | 23
[10 e Fojo) | 24
11 | Py Py | 22
HHHHHHH [= R —
= O o T & @2 = g o =
ZEEREERBEERES EZEZE
M- 1- A8 : BEE
o o z
i g
E
Cﬁ Pins }\M Analog }\9 Clocks]\j; Interrupts }\@ System J\g Directives }\ @ Flash Seumty]

Finally call Bootloader_UART_Start() function in the beginning of main().
With this, all set for bootloader project.

int main(void)
{
Bootloader UART Start():
SiCyGElobalIntEnakble; /* Enable glokal interrupts. */

/% Place your initialization/startup code here (e.g. MyInst Start(}} */

for(::)
{
/* Place your application code here. &/

STEP 2 : MCU flash programming with bootloader project

You have to program bootloader project to MCU after compiling bootloader project. If necessary, flash
are for bootloader project can be protected.

easyDSP can't program the flash for bootloader project.

Once bootloader project is programmed to flash, easyDSP can program bootloadable project.

STEP 3 : Bootloadable project

Please make the schematic like below from component catalog. Please change the name of UART
component to UART_ezDSP.
You can also add other components according to your program (not shown here).

124

easyDSP help

Bootloadabla 1 _UART ezDSP
Bootloadable | UART

Standard

Setting of each component as below :
First for Bootloader component. Please use 'General' tab as it is. Also register Bootloader project hex or
elf file to 'Dependencies' tab.

125

easyDSP help

Mame: | Bootloadahle_1 |

Iy Generall Dependencies Built-in q I

Application version: (0000
Application (D (0000
Application custom 1D 00000000

[] Manual application image placement

Mo MR
AL E LR

Checksum exclude section size (bytes): [0 =

-

Datashest QK Apply Cancel

Mame: | Bootloadahle_1

General /" Dependencies |~ Built-in 4 Pk

Bootloadahle projects require a reference to the associated Bootloader
project’s HEX and ELF files. The HEX files extension is * hex. The ELF files
extension depends on IDE and can be " eff, ".out, .axf, or other.

Bootloader HEX file:
| BootLoader cydsnWCortex MOWARM_GCC_541WDebug WBoot L-:ual:ler.he|

Browse...
Bootloader ELF file:
| . WBootLoader cydsn'®CotexMIWARM_GCC_5419 Debug W Boot Loader ef |

Browse...

Datashest QK Apphy Cancel

Second for UART component.

Please set the communication speed (bps) in the 'UART Basic' tab. It should be same to bps setting of
easyDSP project. But it could be different from bps of bootloader project above. Also note to use 8bits,
no parity, 1 bit stop bit. Also set the parameters of ' UART Advanced' tab as below.

126

easyDSP help

Configure 'UART_ezD5P! ?

Mame: |UART_ezDSP

Configuration /~ UART Basic | UART Advanced | UART Pins | Builtdn |

Mode: Standard ~

Direction: TX+RX ~

Baud rate {bps): 115200 w | Actual baud rate (bps): 117647 (D
Data bits: 8 bits W

Farity: Naone w

Stop bits: 1 bit b

Cversampling: 12 =

[] Clock from teminal
[] Median filter
Retry on MACK
Inverting RX
[] Enable wakeup from Deep Sleep Mode

Low power receiving

Datashest QK Apply Cancel

127

easyDSP help

Configure 'UART_ezD5P! ? ot
Name: |UART_ezDSP |
Configuration | UART Basic,/~ UART Advanced | UART Pins | Builtin | q b

Buffers size Imtemupt OmMA

R¥ buffer size: |8 = () Naone R output

T¥ buffer size: |8 El ® Intemal T¥ output

[] Byte mode O Edemal

Imtemupt sources

[] UART dore R FIFC not empty

(] T FIFO nat ful (] Rx FIFO full

[] Tx FIFD empty RX FIFO overflow

[] TX FIFD overflow R FIFD underflow

[] TX FIFD underflow [RX frame ermor
T¥ lost arbitration R¥ parity emor
T NACK L] R¥ FIFO level

] T FIFD level [] Break detected Break width: |11 =

FIFD levels

T FIFD: 0 w R FIFC: i w
Multiprocessor mode R¥ FIFO drop

Address fhex); |2 = On parity emor

Mask thex): [FF =] On frame emor
Accept matching address in RX FIFO

Flow contral

[]RTS Polarty: | Active Low L RTS FIFD level: (4 =

[]CTs Folarty: | Active Low e

Datasheet oK Apply Cancel

Priority of UART interrupt is recommended to be low not to interrupt higher priority interrupt routine.

Start Page Pm/Tchesign.cysﬁ)/ LED_blinky.cydwr l

Instance Mame !

UART ezDSP_SCB_IRC 8

Pins

M\ Analog | (&) Clocks

Interrupt Numkber

Priority (0 - 3)
3

Interrupts ﬁ System

Directives

Flash Security

128

easyDSP help

UART pins should be same to pins of bootloader project. In this example, P0.4 and P0.5 are used.

ﬁ i MName ’ Port Pin Lock
. - EET EE=Z= 3 £ 2
fzezaeaagfs
=
H
BB == vCCD
z | Paym ARES
3 | Paqr] ForT] | 31
4 | P P FO[E] | 30
5 |Pay E"" Pojs] [ERl] WUART_ezDSFat
i CY8CA245AX1-483 I e
7 |Pam - Pojal | 27
o | 44-TQFP foz|
3 | Fa7) Fori] | 25
[10 BES POy | 24
11 | P30 e
HHHHHHH S = = =
= 0O o T L oo o= o
EEEEEZEESIEZ
- - BEEE: BEE
- >
Z Z =
ER -
E
Cﬁ Pins }\M\. Analog }\9 Clocks]\jf Interrupts }\@ System J\% Directives }@ Flash SecuntyJ

Source files (easyPSoC4.h and easyPSoC4.c) are provided for easyDSP communication. Please include
them in your project. You can find them in the folder of easyDSP installation (\source\PSoC).

Finally call easyDSP_init() function in the main(). Withi this, you are ready to use easyDSP.

$include "project.h"
$include "easyPSoC4.h"

int main (void)
{
CyGlobalIntEnable; /* Enable global interrupts. */

/* Place your initialization/startup code here (e.g. MyInst Start(}) */

£asyDSPE dnit ()

for(::)
{

/* Place your application code here. #/
¥

STEP 4 : IDE setting

1. For easyDSP to access the variable, the debug information should be included in the output file (ex,
*.elf). And the option of assembler, compiler and linker should be set accordingly.

2. *.cyacd file is used for flash programming. So it should exist in the same folder to output file.

3. The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded. For example, in PSoC4 creator, set the 'Remove Unused Sections' false.

129

easyDSP help

Build Settings 7 et
Configuration: Debug (Active) w
Toolchain: ARM GCC 5.4-2016g2update e
- LED blinky v Optimization
-- Code Generaticn Remove Unused Sections False
G- Debug

-- Customizer
- ARM GCC 5.4-201 6-g2-up
-- General
--Assembler
= Compiler
- (3eneral
—Oiptimizaticn

- Command Line Remove Unused Sections

- Linker Allow the linker to remove unused sections. Must be used in conjunction with the
- {zeneral compiler's Create Function Sections option.
-~ Command Line smnepu=cortex-mOplus -mthumb -L Generated_SourceWP SoC4 -WI -Map, ${0utput Dirk/
&} User Commands 5{Project ShortName} map -T Generated_Source WP SoC4'WemOplusgec Id -
specs=nano .zpecs -g ffunction-sections -03 fattto-objects
£ >

7.7.2 PSoC4 hardware

Please connect easyDSP header RX and TX pin to the selected UART pins of MCU.
Also connect easyDSP header #4 pin to VDDD.

RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

VoDD

20k
P3olC4

VDOD
2 1 RX
12 3 X UART_RX
=9 4 3P UART_TX
X—éo] 5T
)(—.DO g T E—X RESET
10] — XRES
= easyDEF Header

- In case there is a reset IC between easyDSP /RESET and MCU XRES, it should transfer easyDSP
/RESET signal to MCU XRES within 0.5sec.

- In case pullup resistor is attached, resistor value should be higher than several k Ohm.

7.8 XMC1

STEP 1 : Hardware

Please connect easyDSP header RX and TX pins to directly UART pins (either P1.3/P1.2 or P0.14/P0.15
pair).

RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.
130

easyDSP help
Also connect easyDSP header #4 pin to VDDP.

VDOP FMC1000 series
—3232 1pl—2% P13 or P0.14
—al 4 3 3 P12 or P05
g b SPT &
A—p- 8 7 Pg— VEE
310 g p=—x

easyDsP Header B

STEP 2 : Modification of easyXMC1.h file

Two files are provided for easyDSP communication (easyXMC1.h and easyXMC1.c). Please include
them in your project. You can find them in the easyDSP installation folder (\source\XMC).
Since XMC Peripheral Library is used in the files, this library should be included in your project.

And modify easyXMC1.h file according to your target USIC channel and baudrate.
The baud rate should be same to that of easyDSP project.

Also allocate 8 receive FIFO buffer and 8 transmit FIFO buffer to the channel of USIC easyDSP uses
while avoiding conflict to FIFO buffer of the other channel of USIC module.

/ Select channel (@ or 1) of USICG :

f/ define 1 to target channel. @ to ancther.
#define USE_USICE CHe @ /f use USICA channel @ with pins P8.14 + PB.15
#define USE_USICE@ CH1 1 // use USIC® channel 1 with pins P1.3 + Pl.2

#define EZ_BUAD_RATE 23p4paU /f baud rate for UART communication for easyDSP
#define EZ_TX_BUFFER_START @ /f FIFO Buffer Partitioning for channel @ of USICS.
#define EZ_RX_BUFFER_START & J/{ FIFO Buffer Partitioning for channel @ of USICe.

STEP 3 : Calling easyDSP_.init()
Pleae include easyXMC1.h in the top of main.c and call easyDSP_init() in the main().

#include "easyXMC1.h"

int main(wvoid)

1

easyDsSP_init();

while(1};

131

easyDSP help
STEP 4 : IDE setting

1. For easyDSP to access the variable, the debug information should be included in the output file (ex,
*.elf). And the option of assembler, compiler and linker should be set accordingly.

2. The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded. For example, in the Dave, set the 'Remove Unused Sections' unclicked.

Settings =R - -

Configuration: | Debug [Active] ~ | | Manage Configurations...

& Tool Settings Build Steps Build Artifact |m) Binary Parsers 3 Error Parsers

(2 Debugging Script file (-} [./linker_script.Id Browse...
(# Warnings
w 3 ARM-GCC C Compiler
@ Preprocessor

Do not use standard start files (-nostartfiles)
[Do not use default libraries (-nodefaultlibs)

(# Directories [Me startup or default libs (-nostdlib)
@ Optimization [Remove unused sections (-Xlinker --ge-sections)
@ Warnings []Print removed sections (-Xlinker --print-ge-sections)

@ Miscellaneous

[] @it all symbael information (-5)
w B ARM-GCC Assembler

(% Preprocessor Runtime library | Mewlib-nano w
@ Directories [] Provide default newlib system calls {-specs=nosys.specs)
@ Warnings DAddeoating point support for printf

Miscellaneous
w B3 ARM-GCC C Linker
@ General

[] Add floating point support for scanf

@ Libraries

@ Miscellaneous

7.9 XMC4

STEP 1 : Hardware

When XMC4 encounters Power On Reset (PORST) as the reset type, it gets to choose from one of four
boot modes based on what is read off the boot pins (JTAG TCK and TMS).

TCK TMS Boot mode
0 1 Normal

0 0 ASC BSL

1 1 BMI

1 0 CAN BSL

Since the easyDSP supports only two boot modes (Normal and ASC BSL), TCK pin should be low (0)
and TMS pin should be selectable (0 or 1) by easyDSP -BOOT pin during power on reset.

Internally to MCU, TCK pin has weak pull-down and TMS pin has weak pull-up. So, external pull
down/up resistor is optional.

132

easyDSP help

Please connect easyDSP header RX and TX pins to directly P1.4 and P1.5 respectively.
Connection to other UART pins than P1.4 and P1.5 will bring no operation.
RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

Also connect easyDSP header #4 pin to VDDP.

VDDF XMCADOD
- . By
e 3 L P14
= 4 I FE oO0T Pi.5
}(—éo i} 5T THS
)(—__:IO g 7 Q_X RESET
1 10] = -PORST
= 2asyDSF Hesder WDDF Oy VEs
20k

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU -PORST, it should transfer easyDSP
/RESET signal to MCU -PORST within 0.5sec.

- In case pull-up resistor is attached, resistor value should be higher than several k Ohm.

STEP 2 : Modification of easyXMC4.h file

Two files are provided for easyDSP communication (easyXMC4.h and easyXMC4.c). Please include
them in your project. You can find them in the easyDSP installation folder (\source\XMC).
Since XMC Peripheral Library is used in the files, this library should be included in your project.

And modify easyXMC4.h file according to your target MCU and easyDSP communication baudrate.
The baud rate should be same to that of easyDSP project.

Also allocate 8 receive FIFO buffer and 8 transmit FIFO buffer to the channel of USIC easyDSP uses
while avoiding conflict to FIFO buffer of the other channel of USIC module.

#define EZ_BUAD RATE 23e4e06U // baud rate for UART communication for easyDsSP
#define EZ_TX_BUFFER_START @ // FIFO Buffer Partitioning for channel @ of UsICa.
#define EZ_RX_BUFFER_START & // FIFO Buffer Partitioning for channel @ of UsICa.

STEP 3 : Calling easyDSP_.init()

Pleae include easyXMC4.h in the top of main.c and call easyDSP_init() in the main().

133

easyDSP help
#include "easyXMC4.h"

int main{void) {

easyD3SP_init():

F Infinite loop
for{::) {
1

STEP 4 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling
time in the same folder to output file (ex *.elf) with same file name. The hex file extension could be
either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash
programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with
extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compilation.

For example, if DAVE IDE is used :

Settings =T v

Configuration: |Debug [Active] ~ | | Manage Configurations...

& Tool Settings Build Steps Build Artifact Binary Parsers & Error Parsers

(#2 Debugging Output file format (-0) | ihex o
(22 Warnings _
w By ARM-GCC C Compiler
(# Preprocessor
(% Directories
(# Optimization
(% Wamnings
@ Miscellaneous
w3y ARM-GCC Assembler
(# Preprocessor
@ Directories
@ Warnings
@ Miscellaneous
w B3 ARM-GCC C Linker
@ General
@ Libraries
@ Miscellaneous
w 83 ARM-GCC Create Flash Image

[‘% 0 utEut
@ Section

@ Miscellaneous

2. For easyDSP to access the variable, the debug information should be included in the output file (ex,
*.elf). And the option of assembler, compiler and linker should be set accordingly.
3. The unused variables could be excluded from the debug information depending on compiler's

134

easyDSP help

optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded. For example, in the Dave, set the 'Remove Unused Sections' unclicked.

Settings L=l

Configuration: | Debug [Active] ~ | | Manage Configurations...

& Tool Settings Build Steps Build Artifact |m) Binary Parsers 3 Error Parsers

(# Debugging
(# Warnings
w B3 ARM-GCC C Compiler

@ Preprocessor

Script file (-T) |.._a'|ir1ker_script.|u:| | Browse...

Do not use standard start files (-nostartfiles)
[Do not use default libraries (-nodefaultlibs)
[Me startup or default libs (-nostdlib)

[Rerncve unused sections (-Xlinker --gc-sections)

@ Drectories
Optimization

@ Warnings

@ Miscellaneous

w B8y ARM-GCC Assembler

[] Print rernecved sections (-Xlinker --print-ge-sections)

[] Omit all syrmbel information (-s)

(2 Preprocessar
@ Directories
(# Warnings

@ Miscellanecus

Runtime library | Newlib-nanc

] Provide default newlib system calls {-specs=nosys.specs)
[] Add floating point support for printf
[] Add floating point support for scanf

w B3 ARM-GCC C Linker
@ General
@ Libraries

Miscellaneous

7.10 RA
7.10.1 RA hardware

Connection to easyDSP

Direct connection of SCI9 RXD9 and TXD9 of MCU to easyDSP pod is recommended. Please note that
SCI9 should be used to program flash by easyDSP.

RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

Also connect easyDSP header #4 pin to VCC.

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU RES, it should transfer easyDSP
/RESET signal to MCU RES within 0.5sec.

- In case pull-up resistor is required, resistor value should be higher than several k Ohm.

135

easyDSP help

VCC VCC
RAZ2 series
VCC 10K 10K RA4 series
RAGEx/RA6Mx/RAGT1/RABT3
RX
3 2 1 ; - P110/RXD9
6 - 3 5 TBO0T P109/TXD9
><—8 G 5 7 P201/MD
w8 7
+—105 49 g p? [RESET RES
VSS
- easyDSP Header |
VCC VCC
VCC 10K 10K
RABT2
RX
ik 101 - PA15/RXD9
5 4 3 5 TBO0T PBO3/TXD9
><—8 6 5 - P201/MD
= 8 T
0 10 g0 [RESET RES
VSS
1 easyDSP Header 1
VCC VCC
VCC 10K 10K
RAS8 series
2 1 RX
4 2 1 3 T P208/RXD9
6 - 3 5 TBOOT P209/TXD9
><—8 6 5 Z - P201/MD
10 8 7 P9 |RESET
1015 g pf ' RES
] VS5
_ easyDSP Header

In case you can't use SCI9, you can use the other SCI channel but only monitoring is available (flash

programming not feasible). In this case let /BOOT and /RESET pins be open.

Compatibility to Debugger

easyDSP uses RXD9 and TXD9 pin of MCU which overlaps with some debugger pins such as JTAG TDO,
JTAG TDI and SWD SWO in case of some of RA4, RA6 and RA8 MCU. Therefore, in this case, you have

to use SWD without SWO.

7.10.2 RA sofrware

RA software (excluding RAO)

136

easyDSP help

easyDSP provides the source file for its communication based on FSP(Flexible Software Package).
Hereafter, FSP setting will be explained based on version 3.5.0.

STEP 1 : FSP setting

First, activate FSP by clicking 'configuration.xml’ file.
Then go to the Stacks tab and generate UART stack. Depending on MCU type, either r_sci_uart or
r_sci_b_uart module should be used.

% | New Stack >

Analog >
Artificial Intelligence ¥
Audic -]
Bootloader >
CapTouch >
4 CAN (r_can) Connectivity ¥
& 12C Communication Device (rm_coemms_i2c) Dsp ¥
& 12C Master (r_iic_master) Graphics ¥
& |2C Master (r_cci_i2c) Input »
4+ 12C Shared Bus (rm_comms_i2c) Menitoring >
& 12C Slave (r_iic_slave) Motor ¥
125 (r_ssi) Metworking ¥
& SPI (r_sci_spi) Power »
4 sp (r_spi) Security >
& UART (r_sci_uart) Sensor ¥
4 USE Compaosite (r_usb_composite) Storage ¥
& USB HCDC (r_usb_hedc) Systermn >
4+ USE HHID {r_usb_hhid) Timers >
4 USE HMSC (r_usb_hmsc) Transfer ¥
¢ USE Host Vendor class {r_usb_hvnd) Q,-. Search..
& USB PCDC (r_ush_pcdc)
4% USB PHID (r_ush_phid)
4 USE PMSC (r_usb_pmsc)
4 USE Peripheral Vendor class (r_usb_pwnd]

No setting to DTC Driver since it is not used. Click UART stack to set the properties.

I3 *[RAGE1] FSP Configuration X

Stacks Configuration
Threads — HAL/Common Stacks
w !xffé HAL/Common — -
42 g_ioport /0 Port (r_ioport) 47 g_|l0p0rt 1/0 Port &% g_uartd UART (r_sci_uart)
& g_uartd UART (r_sci_uart) (rioport)
@ @
A
I I
&1 Add DTC Driver for &1 Add DTC Driver for
Transmission Reception [Mot
[Recommended but recommended]
opticnal]

137

easyDSP help

In case 'properties' window is not shown, use below menus.

Window Help
New Window - L == =T ~| e
Editor H]
Appearance ¥
Show View » (@ Build Targets
Perspective > @ C/C++ Projects
Navigation 3 ? Console Alt+5hift+0, C
gm Documents
LA “= Include Browser
L, Optimization Assistant
EE Cutline Alt+Shift+C, O
4 Problem Details
(* Problems Alt+Shift+ 0, X
55 Project Explorer
] Properties
» Search Alt+5hift+ 0, 5
@ Smart Browser
LE} Smart Manual
w=| Tasks
Other... Alt+Shift+Q, O

All the necessary change is shown in red at below picture :

First, enable FIFO if target MCU supports FIFO for this SCI channel.

Also, change its module name to 'g_easyDSP'. And set the channel # to 9 in order to use SCI9 and
select baud rate properly. Later in your easyDSP projec setting, the same baudrate should be used.
Then change callback name to 'easyDSP_callback' and set its intterupt priority to lowest one.

TXD9 and RXD9 pins should be selected according to hardware setting (check RA hardware setting) .

138

RA_HW_Setting.htm

easyDSP help

In the following explanation, P109 and P110 are used for TXD9 and RXD9 respectively .
i=| Properties < |.'_ Problems| & Console @ Smart Browser T Smart Manual

g_easyDSP UART (r_sci_uart)

Settings Property Yalue

APl Info | v Commen
Parameter Checking Default (B5F)
FIFQ Support Enable
DTC Support Disable
Flow Control Support Disable
R5-485 Support Disable

w Module g_easyD5SP UART (r_sci_uart)

w (General
Marme g_easyDsP
Channel 9__
Data Bits Abits
Parity Mene
Stop Bits 1hbit
w Baud
Baud Rate 115200
Baud Rate Modulation “Disabled
Max Error (%) 5
w Flow Control
CTS/RTS Selection Hardware RT5
Software RTS Port Disabled
Software RTS Pin Disabled
w Extra
w R5-485
DE Pin Dizable
DE Pin Polarity Active High
DE Port Murmber Disabled
DE Pin Nurmber Disabled

Clock Source

Internal Clock

Start bit detection Falling Edge
Moise Filter Disable
Receive FIFQ Trigger Level One

w Interrupts
Callback

easyDSP=caIIback

Receive Interrupt Pricrity Pricrity 15
Transmit Data Empty Interrupt Pricrity Pricrity 13
Transmit End Interrupt Pricrity Pricrity 13
Error Interrupt Pricrity Pricrity 13
w Pins
CT59 Mone
CT5_RT59 Mone
RXDg P110
TXD9 P0G

139

easyDSP help

Move to Pins tab and set the pin configuration so that the operation Mode is 'Asyncronous UART' and
TXD9 is P109 and RXD9 is P110.

48t [RABE1] FSP Configuration 53

Pin Configuration

Select Pin Configuration _Eﬂ Export to C5V file E Configure Pin Driver Warnings
| FPB_RAGE1.pincfg ¥ | Manage configuraticns... Generate data: | g_bsp_pin_cfg
Fin Selection i= ¥ = [% PinConfiguration
|'F,-'pefiltertext | Narme Value Lock Link
v ~ Connectivity:SC| P Pin Group Selection Mixed
scio Operation Made Asynchronous UART
sci v Input/Output
sclz CT59 MNone
sc2 CT5_RTSS MNane
SCl4 RXD9 + P110 & =)
~ scla - MNone
Connectivity:5SDHI 09 Ll 5] 2
Connectivity: 5P|

In case of some RA4, RA6 and RA8 MCU series, TXD9 and RXD9 overlaps with some debugger pins.
Please set the debugger operation mode to SWD without SWO use.

Pin Selection = =] |& Pin Configuration =4 Cycle Pin Group

Type filter text | Mame Value Lock Link

¥ Connectivity: USBFS Py Operation Mode SWD
Input:CTSU ~ Input/Cutput
Input:IRC TCK MNone
Input:KINT DI Mone
Graphics:PDC 0o Mone
Storage: Q5P TS Maone 1
Storage:SOHI SWCLK # P300 Ii.l-. =
System:BUS SWDIO + P108 & =
¥ Systerm:CGC WO Mone
v Systern:DEBUG
« DEBUGD

140

easyDSP help

The input pullup and higher drive capability is recommended to the pins TXD9 and RXD9.

£F [RAGE1] FSP Configuration X

Pin Configuration
Select Pin Configuration E Export to C5V file Configure Pin Driver Warnings
| FPB_RAGE1.pincfg v | Manage configurations... Generate data: | g_bsp_pin_cfg
Pin Selection = = 1% Pin Configuration
|T}'pEfi|tEI’tEXt | MName Value Link
~ P09 " Symbolic Name ARDUINO_D1_PMODZ_M...
+ P10 Comment
P11 Mode Peripheral mode
v P12 Pull up/down Input pull-up
» P12 Output Type CMOS
P14 Drive Capacity H
PI1S w Input/Output
v P2 P109 ¥ 5CI9_TXD9 =)
£F [RAGE1] FSP Configuration X
Pin Configuration
Select Pin Configuration m Export to CSV file Configure Pin Driver Warnings
| FPB_RAGE1.pincfg v | Manage configurations... Generate data: | g_bsp_pin_cfg
Pin Selection = | |% PinConfiguration
|T}fpefiltertext | Name Value Link
~ P09 N Symbaolic Name ARDUINO_DO_PMODZ_M...
< P10 Comment
P11 Mode Peripheral mode
v P12 Pull up/down Input pull-up
v P13 IRC Mene
P14 Output Type CMOS
P15 Drive Capacity H
v p2 v Input/Qutput
v P3 P110 ¥ 5CI9_RXDS [

some MCUs (for example, RA8E1) can enable/disable the clock input to SCI. In this case, the clock should be
enabled in the 'Clocks' tab.

{5} [RABET] FSP Configuration X | =g

Clocks Configuration Generate Project Content

7 Restore Defaults

XTAL 20MHz Clock Src: PLL1P ~ —> CPUCLK Div /1 ~ —=CPUCLK 360MHz
PLL Src: HOCO v P> ICLK Div /3 v —> ICLK 120MHz
HOCO 20MHz ~ j PLL Div /2 \L ~ PLL1P Div /2 ~ —= PLL1P 360MHz [PCLKA Div /3 ~ —= PCLKA 120MHz
LOCO 32768Hz PLL Mul x72.00 s PLL1Q Div /2 ~ —> PLL1Q 360MHz [PCLKB Div /6 ~ —> PCLKB 60MHz
MOCO 8MHz PLL 720MHz PLL1R Div /2 ~ —= PLL1R 360MHz [= PCLKC Div /6 ~ —= PCLKC 60MHz
SUBCLK 32768Hz PLL2 Disabled ~ [=PCLKD Div /3 ~ —=>PCLKD 120MHz
PLL2 Div /2 ~ PLL2P Div /2 ~ —= PLL2P OHz [PCLKE Div /3 ~ —= PCLKE 120MHz
PLL2 Mul xgﬁ 00 > PLL2Q Div /2 ~ —> PLL2Q OHz [BCLK Div /12 ~ —> BCLK 30MHz
PLL2 OHz \L PLL2R Div /2 ~ — PLL2R OHz ~> FCLK Div /6 ~ —>FCLK 60MHz
CLKOUT Disabled ~ —= CLKOUT Div /1 v — CLKOUT OHz

‘SCICLK Src: HOCO v b—) SCICLK Div /1 ~ —= SCICLK 20MHz

SCICLK Disabled

SCICLK Src: HOCO
SCICLK Src: MOCO
SCICLK Src: LOCO
SCICLK Src: XTAL CANFDCLK Div /8 ~ —> CANFDCLK OHz
SCICLK Src: SUBCLK

SCICLK Src: PLL1P

SPICLK Div /4 ~ —> SPICLK OHz

SCICLK Sre: PLL1Q UCK Div /5 7 —3UCK OHz
SCICLK Sre: PLLIR

SCICLK Src: PLL2P OCTASPICLK Div /4~ —= OCTASPICLK OHz
SCICLK Src: PLL2Q
SCICLK Src: PLL2R

Summary ‘ BSP | Clocks Plns‘ Imerrupls‘ Event Links‘ Sla(ks‘ Components

141

easyDSP help

Finally generate code.
2

Generate Project Content

STEP 2 : Calling easyDSP_.init()

Two files are provided for easyDSP communication (easyRA_v11.4.h and easyRA_v11.4.c). Please
include them in your project. You can find them in the easyDSP installation folder (\source\RA).
Pleae include easyRA_v11.4.h in the hal_entry.c and call easyDSP_init() function.

¥include "easyRA v11.4.h"

vold hal entry(void)
{

easyDSP_1nit();

STEP 3 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling
time in the same folder to output file (ex *.elf) with same file name. The hex file extension could be
either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash
programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with
extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compilation.

For example, if you use e2 studio IDE :

142

easyDSP help

e tele]

Settings =T -

Configuration: | Debug [Active] | | Manage Configurations...

& Tool Settings &3 Toolchain Build Steps Build Artifact Binary Parsers & Error Parsers

(# Target Processor Output file format (-0) | Intel HEX w
@ Optimization
@ Warnings
Debugging
w B3 GMU Arm Cross Assembler Other sections (-] &
@ Preprocessor
@ Includes
Warnings
Miscellaneous
w B3 GMU Arm Cross C Compiler
@ Preprocessor
2 Includes
Optimization
@ Warnings
@ Mizcellaneous
w B3 GMU Arm Cross C Linker
General
@ Libraries
@ Mizcellaneous
w 53 GMU Arm Cross Create Flash Image
B5 General
w B3 GMU Arm Cross Print Size
@ General

[Section: -j text
[5ection: -j .data

2. For easyDSP to access the variable, the debug information should be included in the output file (ex,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker option. If necessary, you can set the linker option so that the unused

variables are not excluded. For example, in the e2Studio, set the 'Remove Unused Sections' unclicked.
[] Remove unused sections (-Xlinker --ge-sections)

7.10.3 RAO

Connection to easyDSP

You can use either SAU or UARTA for easyDSP communication.
RX and TX pins of easyDSP pod are connected to MCU directl.

No other connection is required since the flash programming is not supported for RAOQ series.

143

easyDSP help

RX and TX pins of easyDSP pod are pulled up with 100kOhm resistor in the pod.

VCC _
RAD series /w SAU UART
—24 2 103 = RXDn_A (n=0,1,2)
—EG 4 3 35 - TXDn_A (n=0,1,2)
X gq b SET X
w] 7 39—%’:
—— 10 g pr=—
WSS
—1 easyDSP Header _|
VCC ,
RAD series /w UARTA
—iﬂ 2 1 ::; = RXDAO_x (x=A,B,C,D)
—Ec- 4 3 :}5 - TXDAD x (x=A,B,C,D)
>‘{—E¢'] 5 3‘?—}<
W{} 3 7 :}Q—K
—3 10 g =
I—VSS
| easyD3SF Header 1

FSP setting

First, activate FSP by clicking 'configuration.xml’ file.
Then go to the Stacks tab and generate UART stack with either r_sau_uart or r_uarta module.

@ | New St
Al >
Analog >
Audio >
Bootloader >
Connectivity > # 12C Communication Device (rm_comms_i2c)
DSP > @ 12C Master (r_sau_i2¢)
Input > @ 12C Shared Bus (rm_comms_i2c)
Monitoring > @ ICA Master (r_iica_master)
> . .
Motor P |ICA Slave (r_iica_slave)
Networkin > ;
9 ¥ LN (r_sau_lin)
Power > :
P SPI(r_sau_spi)
Security >]
¥ SPI Communication Device (rm_comms_spi)
Sensor > < ‘
Storage N ¥ SPI Shared Bus (rm_comms_spi)
System > ¥ UART (r_sau_uart)
Timers s |4 UART (r_uarta)
Transfer > @ UART Communication Device (rm_comms_uart)
y Search..

If r_sau_uart module is used for easyDSP communication, please set its properties :

The name of the module is g_easyDSP. Set the channel acc. to your board. The baud rate should be
same to the one in the easyDSP project setting. The name of callback is easyDSP_callback. The priority
of interrupts are the lowest (higher number). Finally set the pin number.

144

easyDSP help

o
Generate Project Content g_easyDSP UART (r_sau_vart)
Settings Property Value
| New Stack > == Extend Stack >) Remove Py ~ Common
1 Parameter Checking Default (BSP)
Critical Section Guarding Disabled
. DTC Support Disable
Enable Single Channel Disable
@ Enable Fixed Baudrate Enable
[g ~ Module g_easyDSP UART (r_sau_uart)
%9 Add DIC Driver for %9 Add DTC Driver for AR
Transmission [Optional] Reception [Optional] L _g_easyDSP
Channel 0
Data Bits "8 bits
Parity MNone
Stop Bits 1 bit
Bit Order LSB First
~ Baud
Baud Rate 115200
~ Extra
Operation Clock CKm0
Tx Signal Level Standard
~ Intefrupts
Callback easyDSP_callback

Transmit End Interrupt Priority | Priority 3
Receive End Interrupt Priority | Priority 3

Error Interrupt Priority Prigrity 3
~ Pins
RXDO P100
TXDO P10

If r_uarta module is used for easyDSP communication, similarly to r_sau_uart module, please set its
properties like below.

(]
Generate Project Content g_enyDSP A
Settings Property Value
&) New Stack > == Extend Stack > M] Remove APlinto | Common
Parameter Checking Default (BSP)
DTC Support Disable

Receive Error Interrupt Mode Disabled
~ Module g_easyDSP UART (r_uarta)

~ General
MName g_easyDSP
-t B -y - Channel 0
& Add D'I‘IC I_Z)rwer for % Add DTC Driver for Data Bits Sbits
Transmission Reception [Not)
[Recommended but recommended] oty LELE
optional] Stop Bits 1bit
v Baud
Baud Rate 115200
v Extra
Transfer Order LSB first
Transfer level Positive logic
Clock output Mot Available
v Interrupts
Callback easyDSP callback
Receive Interrupt Priority | Priority 3
Transmit Interrupt Priority | Priority 3
Error Intermupt Priority Priority 3
~ Pins
RXDA | p207
TXDA P208

Then go to the Pins tab, and set the pull-up to both RXD and TXD pin.

145

easyDSP help

Pin Selection i= @ =5 |% Pin Configuration
Tvpe filter text Name Value Link
- Symbolic Name ARDUINO_RX
~ rorts Comment
o Mode Peripheral mode
P1 Pull up/down Input pull-up
v P2 IRQ MNane
P200 Output Type CMOS
E;E; Input Buffer Disable
—— w Input;"[iutput
P208 o \RTA RXDA _Sp

Also check if the clock to the used communication channel is enabled in the Clocks tab.
Finally generate the code.

o

Generate Project Content

Calling easyDSP_init() and IDE setting

Same to the other RA series. So please check here.

/.11 RX
7.11.1 RX hardware

To do monitoring and flash programming together, SCI1 should be connected to easyDSP.
So connect RXD1 and TXD1 pins of MCU to the easyDSP RX and TX pins.

Also connect easyDSP header #4 pin to MCU VCC.

VCC
_ o X MCU
392 e RXD1
———=1 4 1 pE — TXD1
H—gdE 5 pS MD
*i0g)8 I pE_° iResET
— 91 :] RES=
L easy'SF Header 0K
= x-':ﬁf}—fWk,* UB= [if any)
1| | MRS LB [if any) !
10K —W'55

Please check the corresponding pins by MCU type in the table below. The number of pin should be
checked from MCU datasheet.

146

easyDSP help

In case MCU has UB or UB# pin, it should be pulled down or pulled up respectively.

MCU RXD1 TXD1 UB or UB#
RX110 P15 P16 MLA.
Rx111 F13 Fi6 Fi14/UB#
R%100 RX113 P15 P16 P14/UB#
RX130 P30 P26 MNA.
RX13T PEY PEG MLA.
RX140 P30 F26 MLA.
RX230
RX231 P30 P26 PC7/UB
RM23E-A P30 P26 MNLA.
RX23T PD3 PD3 MNA.
RX200 RX23W P30 P26 PC7/UB
RX24T PD3 FD3 MLA.
R¥24U PD3 PD3 MLA.
RX26T PD3 PD3 MNA.
PFO (177/176-pin products) PF2 (177/176-pin products)
RX64M P26 (145/144/100-pin products) P30 (145/144/100-pin products) PC7/UB
RX651 PFO (177- and 176-pin products) PF2 (177- and 176-pin products)
RXB5N P26 (143-, 144-, 100-, and 64-pin products) P30 (143-, 144-, 100-, and 64-pin products) PC7/UB
R¥600 |RX660 P26 P30 PC7/UB
PFO (224- and 176-pin products) PF2 (224- and 176-pin products)
RXBEN P26 (143-, 144-, and 100-pin products) P30 (143-, 144-, and 100-pin products) PC7/UB
RXBET FD3 FDS5 FOO/UB
RX67T1 P26 P30 PC7/UB
PFO (177/178-pin products) PF2 (177/176-pin products)
RX71M |P26 (145/144/100-pin products) P30 (145/144/100-pin products) PCT/UB
RX700 [RX72M [PFO (224- and 176-pin products) PF2 (224- and 176-pin products)
RXT2N P26 (144-, and 100-pin products) P30 (144-, and 100-pin products) PC7/UB
RX72T PD3 PD5 POO/UB

note) N.A. = not available

Other considerations :

- When reset, easyDSP /RESET pin goes low for 500msec around.

- In case there is a reset IC between easyDSP /RESET and MCU RES#, it should transfer easyDSP
/RESET signal to MCU RES# within 0.5sec.

- RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

- In case you can't use SCI1, you can use another SCI channel but only monitoring is doable (flash
programming not doable). In this case no need to connect /BOOT and /RESET pins.

7.11.2 RX sofrware

easyDSP uses the generated code from RX Smart Configurator. You can find the detailed process below
based on RX Smart Configurator v1.40.

STEP 1 : Smart Configurator setting

Please add 'SCI Driver' component by cliking 'Add component' button in the 'Components’ tab.

147

https://www.renesas.com/us/en/software-tool/smart-configurator

easyDSP help

Software component configuration

Components 229 e IS 3 Configure
%
&) New Component m} ps
|T:,fpe filter text ‘
v (= Startup Software Component Selection
v (= Generic Select component from those available in list tlj
& rbsp
Category | Drivers ~
Function | Communications v
Filter |
=
Components Short Ma.. Type Version ™
{ $4 SCI Driver r_sci_no Firmware Integration Technology 440
4 SCI/SCIF Asynchronous Mode Code Generator 1120 »
< >

Show only latest version
Hide items that have duplicated functionality

Description

Dependency : r_bsp version(s) 7.20 ~
Dependency : r_byteq version(s) 1.40, 1.50, 1.60, 1.70, 1.71, 1.80, 1.81, 1.82, 1.90, 2.00

This medule allows any number of SC| channels on the MCU to run in full duplex Asynchronous

mode, single master Simple SPl mode, or master Synchrencus mode simultaneously, The driver is v

Download the latest FIT drivers and middleware

Configure general settings...

Overview | Board | Clocks | System | Components | Pins | Interrupts

Then r_sci_rx and r_byteq components are created.

Software component configuration

Components B3 e =

[+
i@,&
4

w [=- Startup ~
w [Generic
& rbsp
w = Drivers
w = Communications
ﬁ» r_sCi_m
v (= Middleware
w = Generic

%r r_byteq

Owerview | Board | Clocks | Systemn | Components | Pins | Interrupts

Since easyDSP uses SCI channel 1, 'r_sci_rx' components should be set accordingly. Please refer to the
red line below.

The circular buffer is not required for easyDSP. TX and RX queue buffer size should be 12 and 2
respectively at its minimum.

148

-+

Components gy o7 = ey

w [= Communications
‘} r_sCi_m
w = Middleware
W [= Generic

% rbyteq

"
type filter text |
v = Startup ~

w [Generic
& rhsp
w = Drivers

Software component configuration

Configure

easyDSP help

|

Generate Code

EIEE 0 I 00 I R R IR IR R IR R RS R IR I IR A IR I R IR E Ak

TEI interrupt is not used.

The interrupt priority level of ERI and TEI should be the lowest, 1.

Property
W Configurations

Parameter checking

Use ASYNC mode

Use SYMNC mode

Use 55P] mode

Use IRDA mode

Use circular buffer in ASYMNC mode

Byte value to transmit while clocking in data in 55P1 mode

Include software support for channel 0

Include software support for channel 1

Include software support for channel 2

Include software support for channel 3

Include seftware support for channel 4

Include software support for channel 3

Include software support for channel &

Include software support for channel 7

Include software support for channel 8

Include software support for channel @

Include software support for channel 10

Include software support for channel 11

Include software support for channel 12

ASYNC mode TX queue buffer size for channel 0
ASYMC mode TX queue buffer size for channel 1
ASYNC mode TX queue buffer size for channel 2
ASYNC mode TX queue buffer size for channel 3
ASYNC mode TX queue buffer size for channel 4
ASYNC mode TX queue buffer size for channel 5
ASYMC mode TX queue buffer size for channel &
ASYNC mode TX queue buffer size for channel 7
ASYNC mode TX queue buffer size for channel 8
ASYNC mode TX queue buffer size for channel &
ASYNC mode TX queue buffer size for channel 10
ASYNC mode TX queue buffer size for channel 11
ASYNC mode TX queue buffer size for channel 12
ASYNC mode RX queue buffer size for channel 0
ASYNC mode RX queue buffer size for channel 1
ASYMC mode RX queue buffer size for channel 2
ASYNC mode RX queue buffer size for channel 3
ASYNC mode RX queue buffer size for channel 4
ASYNC mode RX queue buffer size for channel 5
ASYNC mode RX queue buffer size for channel &
ASYMC mode RX queue buffer size for channel 7
ASYNC mode RX queue buffer size for channel 8
ASYNC mode RX queue buffer size for channel 9
ASYNC mode RX queue buffer size for channel 10
ASYNC mode RX queue buffer size for channel 11

149

Value

Systern Default
Include
Mot
Mot
Mot
Unused
DxFF
Mot
Include
Mot
Mot
Mot
Mot
Mot
Mot
Mot
Mot
Mot

easyDSP help

Software component configuration

Components =y 7 E}:{

" m
| type filter text |
w [Startup A
w [~ Generic
& rbsp
s [Drivers

w [Communications
ﬁ;- r_ECi_n¢
w = Middleware
w [GEeneric

ﬁ- r_byteq

Configure
Property Value

Transmit end interrupt Disable
GROUPELD (ERI, TEI) interrupt pricrity 1
TX/RXFIFO for channel 7 Mot
TX/RX FIFO for channel 8 Mot
TE/BXFIFO for channel 9 Mot
TE/BXFIFO for channel 10 Mot
THE/RXFIFO for channel 11 Mot
TXFIFO threshold for channel 7 &
TXFIFO threshold for channel 8 &
TXFIFO threshold for channel 9 &
THXFIFO threshold for channel 10 g
TXFHFO threshold for channel 11 g
FXFIFO threshold for channel 7 g
FXFIFO threshold for channel & g
FXFIFO threshold for channel & g
FRXFIFQ threshold for channel 10]
FXFIFQ threshold for channel 11]
Received data match function for channel 0 Mot
Received data match function for channel 1 Mot
Received data match function for channel 2 Mot
Received data match function for channel 3 Mot
Received data match function for channel 4 Mot
Received data match function for channel 5 Mot
Received data match function for channel & Mot
Received data match function for channel 7 Mot
Received data match function for channel 8 Mot
Received data match function for channel & Mot
Received data match function for channel 10 Mot
Received data match function for channel 11 Mot

150

easyDSP help

=
Software component configuration ol
Generate Code

Components (x5 7 [=| =i Configure

L Property Value

[| # Use DTC/DMAC for transmit (SCI1)
v (= Startup = Use DTC/DMAC for transmit (SCI2)
v (= Generic Use DTC/DMAC for transmit (SCI3)
*_ r_bsp Use DTC/DMAC for transmit (SCI4)
« (= Drivers Use DTC/DMAC for transmit (SCI5)
w [Communications Use DTC/DMAC for transmit (SCIG)
2’ LT Use DTC/DMAC for transmit (SCIT)
« (= Middleware Uze DTC/DMAC for transmit (SCIE)
v (& Generic Use DTC/DMAC for transmit (SCI9)

% r_byteq Uze DTC/DMALC for transmit (SCI10)

0
0
0
0
0
0
0
0
0
0

Use DTC/DMAC for transmit (SCI11) 0
Use DTC/DMAC for transmit (SCI12) 0
Use DTC/DMAC for receive (SCI0) 0
Use DTC/DMAC for receive (SCIT) 0
Uze DTC/DMAC for receive (5C12) 0
Usze DTC/DMAC for receive (5CI3) 0
Uze DTC/DMAL for receive (SCI4) 0
Usze DTC/DMAC for receive (SCI3) 0
Use DTC/DMAL for receive (SCIE) 0
Use DTC/DMAC for receive (SCIT) 0
Use DTC/DMAC for receive (SCIE) 0
Usze DTC/DMAC for receive (SCI3) 0
Use DTC/DMAC for receive (SCI10) 0
Uze DTC/DMAL for receive (SCI11) 0
Usze DTC/DMAC for receive (5CI12) 0
Select channel DMAC in case using DMAC to transmit (TX 5CI0) 0
Select channel DMAC in case using DMAC for transferring data (TXSCI1) 0
Select channel DMAL in case using DMAL for transferring data (TX5CI12) 0
Select channel DMAC in case using DMACL for transferring data (TX5CI13) 0
Select channel DMAL in case using DMACL for transferring data (TX5CI4) 0
Select channel DMAC in case using DMACL for transferring data (TX5CI15) 0
Select channel DMAC in case using DMAL for transferring data (TX5CI6) 0
Select channel DMAL in case using DMACL for transferring data (TX5CIT) 0
Select channel DMAC in case using DMAL for transferring data (TX5CI18) 0
Select channel DMAL in case using DMACL for transferring data (TX5CI19) 0
Select channel DMAC in case using DMAL for transferring data (TX 5C10) 0
Select channel DMAL in case using DMAL for transferring data (TX 5C111) 0
Select channel DMAC in case using DMAL for transferring data (TX5C12) 0
Select channel DMAC in case using DMAL for transferring data (RX 5CI0) 1
Select channel DMAC in case using DMACL for transferring data (RX 5CIT) 1
Select channel DMAC in case using DMAL for transferring data (RX 5CI2) 1
Select channel DMAC in case using DMACL for transferring data (RX 5CI3) 1
Select channel DMAC in case using DMAC for transferring data (R 5CI14) 1
Select channel DMALC in case using DMACL for transferring data (RX 5CI5) 1
Select channel DMAC in case using DMAL for transferring data (R} 5CI6) 1
Select channel DMAL in case using DMACL for transferring data (RX 5CI7) 1
Select channel DMAC in case using DMACL for transferring data (RX 5CI8) 1
Select channel DMAC in case using DMAL for transferring data (RX 5CI9) 1
Select channel DMAC in case using DMACL for transferring data (RX 5CI10) 1
Select channel DMAC in case using DMAL for transferring data (RX 5CI11) 1
Select channel DMALC in case using DMACL for transferring data (RX 5CI12) 1
Include software support for IIDA channel 5 Mot
Set the non-active level of the TXD pin Include

ISR R JE IR R IR R R R R IR E I IR R I IR E R R I IR R I IR AR R IR E R I IR R R E IR R I E

RXD1 and TXD1 pins of SCI1 should be enabled. The other pins of SCI1 are not used.

151

easyDSP help

Software component configuration

Components [x3 i [=|

.

[+

i
—+l

| type filter text

w [= Startup
w = Generic
& rhsp
w [= Drivers
w = Communications
% r_sci_m
w = Middleware
w = Generic

% rbyteq

ic
Generate Code
Configure
Property Value
Setthe non-active level of the RXD pin Include
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
« {EF Resources
w i[EE 5CI
~ @
S
S
N
S
~ @ scn
= 5CK1 Pin TTUsed
“w RED1/SMISO1/55CLT Pin Used
“w TXD1/SMOSI1/S5DAT Pin . Used
“w CTS1#/RT512/5512 Pin [Used

Now in the 'r_byteq' components. At least, two queue control blocks are required for easyDSP.
In case you don't use circular buffer in the 'r_sci_rx' component, set the 'Use disable interrupt to
protect queue' as 'Unused'.

In case you use circular buffer, then set as 'Used'.

Components 35 -7 =

W

[+

=+,
—+

| type filter text

v (= Startup
w [Generic
& rbsp
= Drivers
w = Communications
ﬁ, r_sci_m
w = Middleware
w = Generic

‘} 1_byteq

Software component configuration

Configure

|

Generate Code

Property
w Configuratiens
Parameter check
Memory allocation for queue control blecks
Mumber of static queue control blocks
Use disable interrupt to protect queue
Use disable interrupt to protect critical section

152

Value

Use system default
Static memory allocation
2

Unused
Unused

easyDSP help

In the 'r_bsp' component, set 'Processor Mode' as 'Stay in Supervisor mode'.

&

Generate Code

Software component configuration
Components x5 = 20 Configure
e Property
|t}'.pEﬁ|tE'—tEXt | ~ & Configurations
~ = Startup A # User stack setting
w [Generic # User stack size
& rbsp # Interrupt stack size
w (= Drivers # Heap size
w = Communications #
g r_sci_m #
v = Middleware #
v [Generic :
‘} e # Processor Mode
1D code?
IDcode2
1D code3
IDcoded

Initializes C input and output library functions
Enable user stdio charget function

Enable user stdio charput function

Value

2 stacks

0400

0x 100

Ox 400

Enable

Use B5P charget() function

Use B5SP charput() function

Stay in Supervisor mode
OxFFFFFFFF

OxFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF

RXD1 and TXD1 pins are allocated in the 'Pins' tab. Please set 'Assignment' column so that it matchs
with the hardware setting . Please check the MCU datasheet to allocate 'Pin Number' column.

o
Pin configuration z “fl -
enerate Code
Hardware Resource = 1% &% PinFunction -3 | |
Type filter text | |t5-'pefi|ter text (* = any string, 7 = any character) ‘ All
‘#-._ All & Enabled Function Assignment Pin Mumber Direction
SITt(kgzr:trat:r ircuit [l CTs1# ¥ MNot assigned # Notassigned Mone
CT Ekg: ection areur [l RT51# ¥ MNot assigned # Notassigned Mone
- :‘ ':q”e’t“f"”a“”“t‘)’meas”'em RXD1 7_P30/MTIOC4B/POER/ TMRI3/RXD1/SMISO1/SSCL1/TS2/IROD 7 20 I
:‘; |‘:1-1e|:ufp c:.n mt' Erun | 2 [l SCK1 ¥ Mot assigned # Notassigned Mone
:%r p L:.tl_ :nctlon I;r‘”ﬂazrpu seunt [l SMISO1 ¥ Mot assigned # Mot assigned Mone
:7;’ gob'tot'u put enable [l SMOsH ¥ Mot assigned # MNotassigned Mone
- _I imer R R O 5512 ¥ Mot assigned # MNotassigned Mone
v“@ Serlsacllconmmumcat\ons|r1terfa(e O S5CL1 ¥ Mot assigned # MNotassigned Mone
._ Fi O S5DA1 ¥ Mot assigned # MNotassigned Mone
*T TAD ¥ P2E/MTIOCZATMOT/TXD1/SMOSI1/S5DAT/ TS & 22 0
L]
v
€ : > £
Pin Function Pin Number
Overview | Board | Clocks | System | Components | Pins | Interrupts

Finally generate code.

ic

Generate Code

STEP 2 : Calling easyDSP_init()

Two files are provided for easyDSP communication (easyRX.h and easyRX.c). Please include them in
your project. You can find them in the easyDSP installation folder (\source\RX).
First choose the baudrate of SCI communication to easyDSP. Also note it should be same to what you

set in the easyDSP project setting.

153

easyDSP help

NN RN NN R ri

/{ set the baud rate for UART communication with =asyDSE

/74 it should be sams to the baudrate of e=asyDSP project

S i i i i riid i rid i i i iy i riiridiiirriirsiiifrrissy
fdefine EZ BUAD RATE 230400

Then please call the easyDSP_init() function in the main.c.
The priority level of SCI interrupt easyDSP uses is the lowest one (IPL[3:0] = 1). The priority level of

the other user interrupt should be set higher than this.

finclude "easyRX.h"

int main(void)
{

// initial setting

// call easyDSP init() to enable =asyDSP monitoring

2asyD3E_init () ;

/f loop forever
while(l)
{

STEP 3 : IDE setting

1. The output file easyDSP uses should have DWARF debugging information. Therefore when using CC-
RX compiler, the output file with DWARF debugging information should be created in every compiling
time. This is actually done as a default in e2 studio.

2. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder to output file with same file name. The hex file extension could be either 'hex'
or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash programming.
If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with extension 'ihex'. Please
set your IDE accordingly to create hex file in every compilation.

For example, if you use e2 studio IDE with GCC :

154

easyDSP help

&) Properties for RXE6N_GCC O
[type filter text Settings G o
~ Resource =
Linked Resources (22 CPU OutFormat | Intel HEX v
R Fil (# Optimization
esource Filters B Debug User defined options &
Builders % :
« C/Cs+ Build &2 Warnings
' Build Variables ~ 83 Library Generator
. (2 Settings
Environment ;
Logging w 3 Compiler
Sminis [%,2 Source
Tool Chain Editor @ Includes
@ List
C/C++ General A bl
Project Natures v® \‘:ssm &
Project References %; oures
Renesas QF [Includes
. (B2 List
Run/Debug Settings -
w83 Linker
Task Tags g
Validation (& Source
g Archives
@ Miscellaneous
@ Other
v i Objcopy
@ General
~ & Print Size
@ General
Or if you use e2 studio with CC-RX :
Q Properties for RXG6N O
[type filter text Settings -
Resource
Builders
w C/C++ Build Configuration: |HardwareDebug [Active] ~| | Manage Configurations...
Build Variables
Environment
Legging & Tool Settings Toolchain Device 4 Build Steps Build Artifact Binary Parsers @ Error Parsers
Settings
Stack Analysis &3 Common Intel HEX format file (-form=hexadecimal)
Tool Chain Editor 3 Compiler [Motorola § format file (-form=stype)
C/C++ General 5 Assembler [Binary file (-form=binary)
Project Matures B3 Linker E— - o ;
Project References 5y Library Generator S{workspace_loc:/${ProjNamel/${ConfigMame}}
Renesas QF v B3 Converter Division cutput hex file (for Hex) (-output=<File name>) @
Run/Debug Settings @ Output
Task Tags (# Hex format
Validation (# CRC Operation
@ Miscellanecus
@ User

3. For easyDSP to access the variable, the debug information should be included in the output file (ex,
*.elf). And the option of assembler, compiler and linker should be set accordingly.

4. The declared but unused variables could be excluded from the debug information depending on
compiler's optimization level and linker option. In this case, you can't monitor this variable with

easyDSP. If necessary, you can set the linker option so that the unused variables are not excluded.
5. easyDSP supports the little endian mode only.

For example, if you use e2 studio with GCC :

155

easyDSP help

&) Properties for RXE6N_GCC O X
[type filter text Settings 5w v 8
~ Resource N
Linked Resources
Resource Filters Configuration: | HardwareDebug [Active] ~ | | Manage Cenfigurations...
Builders
~ C/C++ Build
Build Variables B Tool Settings E) Toolchain 5 Device Build Steps Build Artifact Binary Parsers | 4
Environment
Logging @ CPU DMakethe double data type be 64 bits in size (-m64bit-doubles)
Settings @ Optimization CPU Type RX66M -
Tool Chain Editor (£ Debug _
C/C++ General @ Warnings Architecture R¥v3 ~
Project Matures v) Library Generator MTFU None o
Project References (£ Settings
Renesas OF w &3 Compiler Data Endian Little-endian data ~
Run/Debug Settings @ Source Default
Task Tags (22 Includes
Validation @ List Max size of constant operand values | Default o

Or, if you use e2 studio with CC-RX :

& Properties for RX66N O X
Settings e
Resource
Builders
~ C/C++ Build Configuration: | HardwareDebug [Active | * | Manage Configurations...

Build Variables
Environment

Logging i Tool Settings Toolchain Device Build Steps Build Artifact Binary Parsers € Error Parsers
Settings
Stack Analysis ~ & Common Instruction set architecture (-isa) RXv3 architecture ~
Tool Chain Editor @ cPuy RX600 & RXT00 seri
C/C++ General (£ PIC/PID S
Project Natures (% Miscellaneous Use floating paint arithmetic instructions (-fpu/-nofpu) Ves v
Project References ~ 18 Compiler =
[] Use double-precision floating-point operation instructions (-dpfpu/-nodpfpu)
Renesas OF v (2 Source P 9P P pfp pfp
Run/Debug Settings (2 Advanced Data Endian (-endian) Little-endian data ~
2 Object
Tesk Tags % " Rounding method for floating-point constant operations (-round) Round to nearest ~
Valirlatinn 22 List

7.12 TX

TX setting

STEP 1 : Hardware

easyDSP uses MCU's single boot mode to access the flash memory. So the SIO/UART channel that is
used in the single boot mode should be used for easyDSP.

Otherwise, easyDSP can support only monitoring, not flash writing.

Please kindly check the datasheet of target MCU to identify which SIO/UART channel and which port
pins are used in the single boot mode and connect them to easyDSP pod.

156

DvDD

¢
= O &M

easyDSP help

DVDD DVDD

Eg 20k Eg 20k

0
RX
1 pl _ RXD
3 s /BOOT TXD
5 -BOOT
7 bl—x
o gpd RESET RESET

easyDSP Header

DVSS

in

For example, below datasheet capture for TMPM370FY indicates :
/BOOT of easyDSP pod should be connected to PFO of MCU.
TX of easyDSP pod should be connected to PEO of MCU.
RX of easyDSP pod should be connected to PE1 of MCU.

157

easyDSP help

19.2.6 Interface specification

In Single Boot mode, an SIO channel 15 used for communications with a programming controller. The same
configuration 1s applied to a commumcation format on a programming controller to execute the on-board pro-
gramming. Both UART (asynchronous) and 'O Interface (synchronous) modes are supported. The communi-
cation formats are shovwn below.

+ UART commumication
Commumnication channel : SIO channel 0
Serial transfer mode : UART (asyvnchronous) mode. half -duplex. LSB first
Data length - 8 bats
Parity bit : None
STOP bit: 1 bat
Baud rate - Arbitrary baud rate

+ 1/O Interface mode
Communication channel : 510 channel 0
Serial transfer mode : [/O interface mode, full -duplex. LSB first
Synchromzation clock (SCLEKO) : Input mode
Handshaking signal : PE4 configured as an output mode
Baud rate : Arbitrary baud rate

Table 19-3 Required Pin Connections

Interface
Pin
UART 11D Interface Mode
DvVDDSs o a
DVDDSE o a
DVSS o s}
AVDD3A o s}
Power supply AJS5A] 0
pins AVDDSB o 0
AVSSB o s}
VOUTS o s}
VouT15 o a
RVDDS o [+}
Mode-setting pin BOOT (PFO) o 0
Reset pin RESET o i}
TXDa (PED) o a
‘Communication RXDO (PE1) - °
pin SCLKO (PE2) x o (Input mode)
PE4 b o (Qutput mode)

Other considerations :

- DVDD could be either DVDD3 or DVDD5 depending MCU type.

- In case there is a reset IC between easyDSP /RESET and MCU -RESET, it should transfer easyDSP
/RESET signal to MCU -RESET within 0.5sec.

- In case pull-up resistor is attached, resistor value should be higher than several k Ohm.

STEP 2 : Modification of easyTX.h file

158

easyDSP help

Two files are provided for easyDSP communication (easyTX.h and easyTX.c). Please include them in
your project. You can find them in the easyDSP installation folder (\source\TX_TXZ).

Since Peripheral Driver library from the MCU supplier are used in the files, this library should be
included in your project.

First, include *_gpio.h and *_uart.h according to MCU.
Also based on the hardware connection above, set the channel humber and its port.
Below example is made based on TMPM370. You should modify it according to target MCU.

Finally set the baudrate of easyDSP communication. The baud rate should be same to that of easyDSP
project.

FAdP P i i i i iirdrddriyidiirddrddiddirydiddidiirdiiiyidirisyiiiryyiiyyiisirssy

step 1 : change header files(* gpio.h and * uart.h) according to MCU

/o and set the SIO/UART channel number and its port pins.

ST i T i T rdd i i i ridididdrididriridiriidiriiidiidrddiyrridiryrridfirriiiridisyy
/f for TMPM37T0 : GICJUART channel 0 /w PED and PEl port

finclude "tmpm370 gpio.h'

finclude "tmpm370 uart.h"

$define EZ_UARTx CH 0

fdefine EZ_SIOC_PORT GPFIC_FE
fdefine EZ_TXD BIT NUM GPIC_BIT_O
fdefine EZ RXD BIT NUM GEIC BIT 1

FAdP P i i i i iirdrddriyidiirddrddiddirydiddidiirdiiiyidirisyiiiryyiiyyiisirssy

for SIO/UART communication with easyDSP
! it should be same to the baudrate of sasyDSP project
AAAL T T i i i rs s riridiirddrdiiddirddriyidiriryiiiridirrrdiiirysirryiissirssy

STEP 3 : Calling easyDSP_.init()

Pleae include easyTX.h in the top of main.c and call easyDSP_init() in the main() after the initialization
of others.

finclude "easyTx.h"

int main (void)

{
2asyD3P_init();
while (1) {
}

1

159

easyDSP help
STEP 4 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling
time in the same folder to output file (ex *.elf) with same file name. The hex file extension could be
either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash
programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with
extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time.

2. For easyDSP to access the variable, the debug information should be included in the output file (ex,
*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded.

4. To compile inline functions in the easyTx.c, please enables c99 mode in the compiler options if
required.

/.13 TXZ3

STEP 1 : Hardware

easyDSP uses MCU's single boot mode to access the flash memory. So the UARTO channel
(PA1/PA2) that is used in the single boot mode should be used for easyDSP.

Otherwise, easyDSP can support only monitoring, not flash writing. Also the source file easyTXZ3.c
should be modified accordingly by you.

DVDD DVDD
20k 20k
DVDD T>Z3
RX
CL 292 [l — UTORXD (PA2)
29 4 3 Pe—mo0T UTOTXDA (PA1)
%206 5 03 BOOT N (PBO}
x—384 g 7 bl—x,
+—104 45 g 9 [RESET RESET N
— easyDSP Header

I DVSS

Other considerations :

- DVDD could be either DVDD3 or DVDDS5.

- In case there is a reset IC between easyDSP /RESET and MCU -RESET, it should transfer easyDSP
/RESET signal to MCU -RESET within 0.5sec.

- In case pull-up resistor is attached, resistor value should be higher than several k Ohm.

STEP 2 : Modification of easyTXZ3.h file

Two files are provided for easyDSP communication (easyTXZ3.h and easyTXZ3.c). Please include them
in your project. You can find them in the easyDSP installation folder (\source\TX_TXZ).

Since Peripheral Driver library from the MCU supplier are used in the files, this library should be
included in your project.

First, include the CMSIS header file according to target MCU.

Finally set the baudrate of easyDSP communication. The baud rate should be same to that of easyDSP
project.

160

easyDSP help

FLLTTEL P TPTT T AP T il id i i i iridididirriiiddididiiriiiididirrisiidiriiris
// step 1 : include CMSIS Peripheral Access Layer Header File

/i include header file name accordingly to target MCU

LTI TI AP AP r i riidididrr i iiddididiirriiidirirsirriiiiiiriy
#include <TMPM3HE.h> // For example, TMPM3HE.h for TMPM3HE MCU.

//#include <TMPM3HQ.h> // For example, TMPM3HQ.h for TMPM3HQ MCU.

FIPTTTIIE PP EETI AT PP T EE T EE i i i i riddiiiririiidiidiiir i rrrrddiirirrrriiidirires
// step 2 : set the baud rate for UART communication with easyDSP
v it should be same to the baudrate of easyDSP project

PEPLTELIE PP P LTI T TP PP 700770 P P T ET i i i i i iririddiiririrdiididdiriririrdiiiiiesy
#define EZ_BUAD RATE 115200

STEP 3 : Calling easyDSP_.init()

Pleae include easyTXZ3.h in the main.c and call easyDSP_init() in the main() after the initialization of
others.

#include "easyTXZ3.h"™

int main{void)

{
easyDSP_init () ;
while (1) {
}

}

STEP 4 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling
time in the same folder to output file (ex *.elf) with same file name. The hex file extension could be
either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash
programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with
extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time.
2. For easyDSP to access the variable, the debug information should be included in the output file (ex,
*.elf). And the option of assembler, compiler and linker should be set accordingly.
3. The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded.
4. To compile inline functions in the easyTXZ3.c, plase enables c99 mode in the compiler options if
required.

161

7.14 LPC

LPC1x00 setting

STEP 1 : Hardware

easyDSP help

easyDSP uses MCU's USARTO channel to communicate with MCU and program flash
below hardware connection by MCU type.

Voo

20K

LPC12x1/LPC13x2/ I PC13x3

RXD (PIO1_6)

TXD (P10177)

PIOO_1

PIOO_Z

20K

/RESET
VS5

LPC1 53

UO_RXD

UO_TXD

F 7Y

156_0
JEL

.|||_|

VDD VDD

/RESET
WSS

BC1

UO_RXD (=P2_1)

UO_TXD (=P2]0]

g
10

P27

Voo

20K

VoD
LPC12x5/LPC13x6/ L PC13xT
3 1 R -
< Pz T RXD (PIOD_18)
4 3 pe So0T TXD (P100_19)
g9 e PIOO_1
ol 7P o P100_3
10 10 2 2 ESET [/RESET
L easyDSP Header vSS
= 2ok L1
VDD VDD
oo ; 20K = 20K
LPC1 T
RY -
: 1 ; T RXD0O or UO_RXD (=P0O[2])
e 3pd aeeT TXDO or UO_TXD (=Po[2]]
w—ge E P37 == p2[10]
w—Baig 7T o
RESET
L 10] = /RESET
L easyDSF Header vSS
= —

For LPC1500, pin by different MCU package is shown below.

ISP pin

LQFP48

LQFP64

LQFP100

ISP_0

PIO0_4

PIO1_ 9

PIO2_5

ISP_1

PIO0_16

PIO1_11

PIO2_4

U0_TXD

PIO0_15

PIO0_18

PIO2_6

U0_RXD

PIO0_14

PIO0_13

PIO2_7

For LPC1800, make sure that OTP memory is not programmed or the BOOT_SRC bits are all zero so that the boot

mode is determined by the states of the boot pins P2_9, P2_8, P1_2, and P1_1.

Other considerations : TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP

pod.

STEP 2 : Use of LPCOpen library

162

. So check the

easyDSP help

easyDSP implements USART communication with MCU by using NPCOpen library. Therefore this library
should be included in the user program.

STEP 3 : easyDSP source and header file

Two files are provided for easyDSP communication (easyLPC1x00_va.b.h and easyLPC1x00_va.b.c).
Depending on its version, a and b are changeable. You can find them in the easyDSP installation
folder (\source\LPC).

Please include them in your project according to target MCU.

In the header file, please set a target MCU or MCU package or baudrate of easyDSP communication.
The baud rate should be same to that of easyDSP project.

It differs by target MCU series. Please refer to below for LPC1500.

ST F T i i ridridddiddiiddiidiriddiiddiridiidddiidiiiddiidiiiiddridiiiidiiddiriisiidiriiiiidisys

// Package Selection : Please choose MCU package and define it as 1. set as 0 for others.
SEETFES T T i ridddiddiriddidd i ridddidiridiiddiridiiidddiidiiiddiidiiiidiidirirriidirriiiidiidirisy
fdefine EZDSP_LQFP48 0

fdefine EZDSP_LQFPE4 1

fdefine EZDSP_LQFP100 0

S FEF i rriiiiidrrrririiiiirriiiiiiidiiiiiiiiiiiiiriiiiiirrrriiriiiiirriiiiiiiiiisiss
// step 2 : set the baud rate for USART communication with ca=_(E°—

/A it should be same to the baudrate of =asyDSP projsct
.-".-".-".-".-".-".-".-".-".-".-’.-’a’a".-’a’a’.-’.-’.-’.-’.-’.-’.-’.-’a’a’.-’a’.-’a’a’.-’.-’.-"

fdefine EZDSP_BAUDRATE 115200L

STEP 4 : Calling easyDSP_init() function

Please include easyLPC1x00_va.b.h in the main.c. And in the main(), call easyDSP_init() after the
initialization of MCU.
In the easyDSP_init() function, all necessary setting for easyDSP monitoring are done.

163

http://www.nxp.com/lpcopen

easyDSP help
#include "easyLPCl1x00.h"

int main{void)

{
// initial setting
// call easyDSP _init() to enable easyDSP monitoring
easyDSP _init();
// loop forever
while ()
{
}
}

STEP 5 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling
time in the same folder to output file (for example, *.axf) with same file name. Pleae set your IDE
accordingly to create hex file in every compilation.

For example, if you use MCUXpresso IDE, register arm-none-eabi-objcopy -0 ihex
"${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.hex" in the Post-build steps.
2. For easyDSP monitoring, the debug information should be included in the output file (for example,
*.axf). And the option of assembler, compiler and linker should be set accordingly.
3. The unused variables could be excluded from the debug information depending on compiler's
optimization level and linker setting. If necessary, you can set the linker option so that the unused
variables are not excluded

7.15 Cautions

* Reset pin of MCU

Don't connect or disconnect easyDSP pod during MCU operation. It could cause any unintentional reset
to MCU. In case you have to connect, please connect easyDSP to PC first, then to MCU. In case you
have to disconnect, please disconnect easyDSP from MCU first, then from PC.

For your reference, reset signal is driven to low by easyDSP during 500msec. Therefore you can

add enough filters to the reset pin of MCU.

* What is proper baud rate ?
164

easyDSP help

Normally higher baud rate means faster communication. But MCU should be able to handle this
much high baud rate data communication. For example, it takes around 86usec
(1/115200bps*10bit) for easyDSP to send one byte to MCU at 115200bps baud rate. MCU should
process this one byte data within next 86usec for proper communication. If higher prioritized routine
takes most of time and very small time is left for ISR routine for SCI, then easyDSP fails its
communication and display the value of variables as '?'.

* Various IDE

For Arm MCU, easyDSP is designed for a wide range of software integrated development environments
(IDEs) but is not fully tested for all IDEs. If not working properly, report it to easyDSP@gamil.com .

* Variable is not displayed

Depending of options of compiler and linker, the variable could be not displayed in the easyDSP if this
variable is not used meaningfully in the user program.

This variable is not displayed in the map file too. Or displayed but with its address 0.

To display it in the easyDSP, please change the compiler/linker option accordingly.

8. Menus

8.1 Project

Ctrl+M
Ctrl+0

Ctrl+3

1.2807x_BitField_FLASH.ezd

2 2838xD_cm_DriverLib_FLASH.ezd
3 WEB15 HAL flash delete later.ezd
4 ChUsersy, G031 LL flash.ezd
5WE15 HAL flash.ezd

B ChUsersy..\WB13 LL.ezd

7 .28002x_DriverLib_FLASH.ezd

8 2837x5 _BitField_FLASH.ezd

Exit

easyDSP deals with your working files with the project concept. The menus belongs to 'Project’' menus
are

'New' menu:

Clicking 'New' menu shows the dialog box where you can select the name of project file. The extension
of project file should be "ezd".

165

mailto:easyDSP@gamil.com

easyDSP help

Mew project file ot

Look in: | | | test ~| « & et E-

Mo iterns match your search,

File name: |eas'_.'DSP.ezd|
Files of type: | Project file(" ezd) - Cancel

And then you can set the properties of your project in the property sheet. The property sheet consists
of three pages such as 'Basic', 'Hardware' and 'Miscellaneous'.

'Basic' page sets the target MCU and output file (*.out, *.elf, *.axf and *.x).

First set the target MCU. In case of some STM32 MCU, single or dual bank is specified in the MCU
name only when bank mode should be specified. That is, there is no bank mode in the STM32 MCU
name either when bank mode is fixed (single or dual) in the MCU or when there is no need for
understanding bank mode for easyDSP operation.

For some TI C28x MCUs for which debugging model (either COFF or DWARF) should be specified, the
combo box for this is shown. The debugging model should be same to that of compiler option.
Please note that further improvement or bug fix for coff debugging model is stopped from easyDSP
version 9.

Then the output file should be specified. The output file should exist before creating new easyDSP
project.

Also except TI C28x with COFF debugging model, the output file should be DWARF debugging
information.

Once the project is created, 'Basic' page is not edited any longer.

Project Settings *

Eas l Hardware] Miscellaneous]

mCu
Vendor T -
Series |TM532DF25DI":-; j Debugging model (only for Tl 28x) |dwaf -
Part number | TMS320F28075 =

Output File(s)

CPU1 C:¥temp ' 2307«_BitField out

QK | Cancel

MEY'Tn case of multi core MCU, please specify the output files for all the used cores of MCU in the user
program. easyDSP uses these files for RAM booting and flash programming. Also specifiy the core

166

easyDSP help

easyDSP is communicating with in the 'Communication with easyDSP' check boxes.
In below figure, easyDSP is communicating with CPU1 and CPU2 while CPU1, CPU2, CPU3 and CPU4 is
running in the MCU.

Project Settings *

Basic l Hardware] Miscellaneous]

MCu
Vendor TI -
Series |AM253¢¢ Sitara j
Partnumber | AM2634 |
Grade |Grade O |
Output File(s) i.?t::::;c;gnpn
CPUT(R5_0_0) | C:MitempWicpulout v
CPUZ (R5_0_1) | [C:¥tempcpu? out v
CPU3(R5_1_0) | C:¥tempcpu3.out -
=

CPU4 (R5_1_1) | C:¥tempcpud.out

OK | Cancel

'Hardware' page sets the hardware configuration for easyDSP communication.

'Protocol' : This is disabled menu.

'Baud rate' : This value means baud rate at PC side which should be same to SCI/UARt baudrate of
MCU.

'Wait-more time' : During communication with MCU, easyDSP wait for the response from MCU for
certain period. This value extends the waiting time. Please set this value 1000 usec as a first step. If
the communication fails due to slow response from MCU, please try to increase this value a little step
by step (maximum value is 30000usec) until the communication becomes ok.

Project Settings >

Basic ;| l Miscellaneous l

Communication Configuration

Protocol Mormal
Baud rate 115200 | bps

Wait-more time 1500 usec

0K | Cancel |

'Miscellaneous' page sets the remains.

'Seek ...' function is very useful when you type the variable name in the window (For ex, command
window). It recommends candidates for variable name automatically.

'Stop..."' function stops communication of easyDSP if the communication fails successively.

'Display printable ..." display not value but character in case either char or unsigned char variable has a
value between 0x20 and 0x7F.

167

easyDSP help

'Highlight ..." shows the changed value of variables in yellow background color.
External editor : set the editor program to be called in the Tools>Editor menu.

Project Settings >

[V Seek varables name automatically

™ Stop communication if it fails successively
I Display printable character if the value of ‘char’ or ‘unsigned char’ variable is printable

I™ Highlight changes in windows

Extemal editor J

0K | Cancel

'Open' menu:
opens the existing project.
'Set & Save' menu :

sets the properties of active project and then save.

'Close' menu:

closes current project.

'Delete' menu :

deletes all files easyDSP created.
easyDSP makes some files either in the project folder or in the folder the output file is located. They
are

MCU in the easyDSP project folder in the folder where output file is located
project name.ezd : saves properties of
project
project name.vars : saves information of
Common X
variables
project name.cfg : saves information of the
others
easyDSP_FlashApiWrapper.out output file name.ez.bin : RAM booting and flash
C28x easyDSP_FlashApiWrapper.ou~ programming file (Gen2)
easyDSP_FlashApiWrapper.ez.bin : output file name.ez.hex : flash programming file
files for flash operation (Gen3)
PSOC output file.nam‘e.ez.cyacd : flash
programming file

168

easyDSP help

STM32
TM4C
MSPMO
RA / RX
PSOC
XMC
TX(Z)
LPC
S32

output file name.ez.hex : RAM booting (if
doable) and flash programming file

output file name.ez.appimage : RAM booting

AM2x and flash programming file

8.2 Edit

Edit menu

Undo Ctrl+£

Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V

No need to explain ;-)

8.3 MCU

8.3.1 Common
MCU menu

2 RAM Booting Alt+R
< FlashROM Alt+F
I'_"] Reload *.out

) Reset MCU
Reset Communication
0. Pause Communication

? Communication Status

'RAM Booting' menu
'Flash ROM' menu

169

easyDSP help

Please check the below.
C28x
STM32
S32
AM263x
TM4C
MSPMO
PSoC4
XMC1
XMC4
RA

RX

TX, TXZ3
LPC

'Reload *.out' menu

reloads output file (*.out, *.elf or *.axf). It comes in handy when you use debugger and easyDSP
together or when you uses easyDSP only for communication (not using /RESET and BOQOT pin).
For the MCU easyDSP doesn't support flash programming such as XMC1, please use this menu to
update symbol information whenever the user program is updated (programmed).

'Reset MCU' menu

The /RESET pin of easyDSP pod goes down to low for 500ms to make reset MCU.
The /BOOT and BOOT pin of easyDSP pod are inactive : no signal output from them.
For the MCU easyDSP doesn't support flash programming such as XMC1, this menu is not disabled.

JRESET PRELNLS >

'Reset Communication’ menu

It initializes the states of ISR for easyDSP.

'Pause(Resume) Communication' menu

It pauses the communication of easyDSP. This menu toggles into 'Resume Communication' menu.

'Communication Status' menu

170

Menu%20DSP%2028x_eng.htm
MenuStm32_eng.htm
MenuAM263x_Eng.htm
MenuTM4C_Eng.htm
MenuMSPM0_Eng.htm
MenuPSoC_eng.htm
MenuXMC1_eng.htm
MenuXMC4_eng.htm
MenuRA_eng.htm
MenuRX_eng.htm
MenuTX_eng.htm

easyDSP help

It displays the target MCU of easyDSP pod and communication state such as read/write fail/success
ratio. Over 90% of success ratio is mandatory to have fluent communication.

easyDsP

< easyDsP Pod >
far ARM

< Communication Setting =
running

protocol : normal
baudrate : 115200
wait-more time : 1500[usec]

< CPUT Communication Status =
of read failure : &

of read success : 740

read success ratio @ 100.0 %

of write fail : 0

of write success: 23

write success ratio @ 100.0 %

Do you want to clear up the existing information?

Yes Mo

8.3.2 C28x
MCU menu (TI C28x)

2 RAM Booting Alt+R
< FlashROM Alt+F
I'_"] Reload *.out

) Reset MCU
Reset Communication
0. Pause Communication

? Communication Status

'RAM Booting' menu

is for booting to RAM area only (NO flashrom area). During RAM booting, communications in all
windows are temporarily paused.

171

easyDSP help

RAM booting for TMS320F28x x

st
verty [

Status : Venfying RAM booting ... Completed !
1sec elapsed

Iv Enable fast booting I¥ Enable fast verifying

Boot ‘ Verify ‘ Boot > Verify ‘ ‘ Exit

'Boot' button starts booting operation. First it is checked if user program is appropriate for RAM booting.
If it fails, booting operation stops.

In case the user program is re-compiled in the meantime, easyDSP detects it and asks you whether
you will use new program.

Faster action will be tried if you check 'Enable fast" check box.

If 'Enable fast verifying' is not working properly due to limited resource availability, please disable this
option.

Below error message during RAM booting indicates DSP didn't get into booting mode due to most likely
wrong hardware connection.

RAM booting for TMS320F28x x
st |
Verify

Status : Reset DSP and trying auto bauding at 62956 bps ... Failed !

Iv Enable fast booting Iv Enable fast verifying

...

Boot | Verify ‘ Eluut:ﬂferify‘ ‘ Exit ‘

'Verify' button check if the RAM booting was done correctly. If failed during verifying, below message
comes out. It means that the data at address 0x240000 is now 0x159D which is supposed to be
0x0x28AD with proper booting.
Status @ Verify failed!
Data mismatch @0x240000 : Boot=0x26AD, Read=0x159D

'Boot > Verify' button is doing 'Boot' and 'Verify' button consecutively.
'Stop' button stops any ongoing activity either booting or verifying.

'Flash ROM' menu for Gen2 MCU, F2837xD and F2838x

172

easyDSP help

On-chip flash programmer for TM5320F28x

file for flash writing

‘C:EUsers‘»chundaew‘»cdw‘uCIPOS‘nNew product concept\uAwA programi\DebugiuA bin

select target 28x device

EXIT

| TMS320F2808 - clock 100Mhz (20Mhz x 5) -

—Code Security Password —

Key 0 IW
Key 1 IW
Key 2 IW
Key 3 IW

—Erase Sector Selection
¥ Sector A: [3F4000-3FTFFF] [~ Sector F: [3E0000-3E3FFF]
[Sector B: [3F0000-3F3FFF] I Sector G: [3DCO000-3DFFFF]
[Sector C: [3EC000-3EFFFF] [Sector H: [3D8000-3DBFFF]
¥ Sector D [3EB000-3EBFFF] |~
[Sector E: [3E4000-3ETFFF] [~

Select Nnnel Select Used | Select Mot Used | Select All |

Keyd |OxFFFF

Key 5 IUxFFFF
Key 6 IUXFFFF
Key 7 IUXFFFF

Unlock |

—Operation
Erase = Program > Reset > Exit |
Erase = Program > Verify > Reset > Exit
Erase Prugraml Verify | STORP I | Reset = Exit

Checking bin file ... OKI

-]

173

easyDSP help

On-chip flash programmer for TM5320F28377D

Flash APl speed [bps] [460800 ~| =
) " Freeze
Code Security Password Erase or Blank Check Sector Selection
CPU1 CPU2
Eal e [SecA: [80000-81FFF] [Sec A [80000-81FFF]
21 KEYD IUXFFFFFFFF IUXFFFFFFFF v Sec B : [82000-83FFF] v Sec B : [62000-83FFF]
71 KEY1 |UxFFFFFFFF |UxFFFFFFFF ™ Sec C: [84000-85FFF] ™ Sec C: [84000-85FFF]
v Sec D : [B6000-87FFF] v Sec D : [86000-87FFF]
ral KEYZlUxFFFFFFFF |UxFFFFFFFF [~ Sec E : [88000-8FFFF] [~ Sec E : [88000-8FFFF]
71 KEY3 [0xFFFFFFFF [OxFFFFFFFF I Sec F - [90000-97FFF] I Sec F : [90000-97FFF]
[Sec G : [98000-9FFFF] [~ Sec G : [98000-9FFFF]
72 KEYD |UxFFFFFFFF |UxFFFFFFFF [~ Sec H : [A0D00-ATFFF] I~ Sec H : [A0D00-ATFFF]
79 KEY1 |[]xFFFFFFFF |[]xFFFFFFFF [Sec | : [ABO00-AFFFF] [Sec | : [ABO00-AFFFF]
[~ Sec J : [BODDO-BTFFF] [~ Sec J : [BODDO-BTFFF]
2 KEY2 |UXFFFFFFFF |UxFFFFFFFF [~ Sec K : [BBO00-BIFFF] [~ Sec K : [BB000-BIFFF]
79 KEY3 |UxFFFFFFFF |UxFFFFFFFF ¥ Sec L : [BAOODD-BBFFF] ¥ Sec L : [BAOODD-BBFFF]
[~ Sec M : [BCO00-BDFFF] [~ Sec M : [BCO00-BDFFF]
v Sec M : [BEO0O-BFFFF] v Sec M : [BEO0O-BFFFF]
Unlock
Select Nonel Select Used | Select Mot Used | Select All |
—Operation
Erase = Program > Reset > Exit Erase = Program > Verify = Reset » Exit |
Erase Blank Check Program Verify STOR Reset = Exit |
Status

CPU1 : Checking the validity of hex file ...OK
CPUZ2 : Checking the validity of hex file ...OK

I —

174

easyDSP help

| On-chip flash programmer for TM5320F28382D CPU1 CPU2 CM

: Flash APl Speed [bps] |499200 - EXIT
| [~ Freeze
| ~Code Security Password Sector Selection for Erase or Blank Check
CPU1 cPu2 CM
| ¥ Sec A: [80000-81FFF] ¥ SecA: [80000-81FFF] Sec A [200000-203FFF]
Z1 CSMPSWDO0 |0xFFFFFFFF v Sec B : [62000-83FFF] W Sec B : [82000-83FFF] Sec B : [204000-207FFF]
71 CSMPSWD1 | 0x4DTFFFFF [~ Sec C : [84000-85FFF] ™ Sec C: [84000-85FFF] Sec C : [208000-20BFFF]
¥ Sec D : [BE000-87FFF] [+ Sec D : [36000-87FFF] Sec D : [20C000-20FFFF]

21 CSMPSWD2 [0xFFFFFFFF
21 CSMPSWD3 [0xFFFFFFFF

|| 22CSMPSWDO [0xFFFFFFFF

| | z2CSMPSWD1 [0x1FTFFFFF

| | 22CSMPSWD2 [0xFFFFFFFF

| | 22CSMPSWD3 [0xFFFFFFFF

; Sec M : [BCO00-BDFFF] Sec M : [BCO00-BDFFF] Sec M - [278000-27BFFF]

' Sec N : [BE000-BFFFF] Sec N : [BE000-BFFFF] Sec N - [27C000-27FFFF]

Unlock
| # Select Used Select Not Used Select All Select None ‘

Operation

Sec E : [68000-8FFFF]
Sec F : [90000-97FFF]
Sec G : [98000-9FFFF]
Sec H : [AD000-ATFFF]
Sec | : [AB000-AFFFF]
Sec J : [BO000-BTFFF]
Sec K : [B8000-BIFFF]
Sec L : [BADDO-BBFFF]

Sec E : [88000-8FFFF]
Sec F : [90000-97FFF]
Sec G : [98000-9FFFF]
Sec H: [AD00D0-ATFFF]
Sec | - [ABO00-AFFFF]
Sec J : [BO000-BYFFF]
Sec K : [BB000-BIFFF]
Sec L : [BAOODO-BBFFF]

Sec E : [210000-21FFFF]
Sec F : [220000-22FFFF]
Sec G : [230000-23FFFF]
Sec H : [240000-24FFFF]
Sec | : [250000-25FFFF]

Sec J : [260000-26FFFF]
Sec K : [270000-273FFF]
Sec L : [274000-277FFF]

£ S Y I R Y B
- i I e Y
3 S s I T N N 3

<17
1%
i

Erase > Program > Reset > Exit Erase = Program > Verify > Reset > Exit ‘

Erase Blank Check Program Verify Reset = Exit ‘

Status
CM : Checking the validity of bin file ... OK

It programs onchip flash of MCU. Note that the communication in other windows are temporarily
paused.

Please follow below sequence.
step 1 : First select target device according to your MCU and clock configuration. This menu is available
for some MCU only.
step 2 : Select the sectors for erasing or blank checking. Either use the buttons or click the checkboxes
of sectors.

All sectors used in the user program are selected with 'Select Used' button. The other way
around with 'Select Not Used' button.

For some MCUs, Freeze checkbox is provided to enable or disable sector selection.
step 3 : When the buttons (‘Erase’, ‘Blank Check’,'Program’, ‘Verify’ or ‘Unlock’) are pressed first
time, easyDSP boots MCU with the agency program (not user program) to handle flashrom
manipulation.

If the output file (*.out) is updated meantime, easyDSP ask the user to use update output file
or not.

One click for all operations possible (ex. 'Erase > Program > Reset > Exit' button)
step 4 : Now MCU is booted and communicates with easyDSP for proper flashrom access.
step 5 : when exiting this dialog box, easyDSP forces MCU to be reset. Then MCU boots with flashrom
and user program starts.
note) above dialog box looks different depending on the MCU type
note) For 2837xD and 2838xS(D), this will program the supplied data portion in flash along with
automatically generated ECC(Error Correction Code).
note) In case below menu is activated, bps of flashAPI wrapper can be selected to reduce flash
operation time. Note that certain bps could not work.

This bps value has nothing to do with the bps value used in variable monitoring. So, don't need

to match with the bps value in the easyDSP header file and in the project setting.

Flash APl speed [bps] |115200 =~

175

easyDSP help
'Flash ROM' menu for C2834x series

file to be programmed
D easyDSP\Program\280x\test2808Flash\DebugiTest2808flash_bin

EXIT after RESET

SPIFlash |AT25DF021 ~| -
Operation
Erase chip ‘ Erase block | Program ‘ Werify
Program = Verify | Erase chip = Program = Verify | Erase block = Program = Verify
STOP
0%

Since 2834x doesn't have internal flash, easyDSP supports external flashs with SPI interface. They are
AT25DF021(2M bit), AT25DF041(4M bit), AT26DF081(8M bit), AT25DF321(32M bit), M25P20(2M bit),
M25P40(4M bit), M25P80(8M bit), M25P16(16M bit), M25P32(32M bit) manufactured by ATMEL or
Numonyx. Other flashs which support same commands and features to above could be operated.
There are two kinds 'Erase' function : 'Erase chip' erases all chip memory. 'Erase block' erases only the
memory region which will be programmed with user program. Because 'Erase block' uses '4K byte
block erasing' feature of ATMEL flash, the memory region to be erased will be normally larger than the
actual code size, at the most, 4K bytes.

Please note that easyDSP does 'global unprotect' action to the flash during its operation.

Also note that easyDSP sets LOSPCP = 2 and SPIBRR = 0 to control SPI-A boot mode speed.

'Flash ROM' menu for others

This is for Gen.3 single core MCU and Gen.3 multi core MCU like F28Px.
It programs onchip flash of MCU with user program. Note that the monitoring of easyDSP is
temporarily paused during flash operation.

176

easyDSP help

TMS320F2800137 Flash Programmer

Operation Sector selection for erasing
[Freeze
Erase > Program + Verify = Reset > Exit Select Start Address Size
[¥l Sector 0 000080000 1K
[v] Sector 1 (00080400 1K
[1Sector 2 000080800 1K
Erase Blank [Sector 3 0x00080C00 1K
[1Sector 4 000081000 1K
[Sector & 000081400 1K
Program + Verify [Sector 6 0x00081800 1K
[Sector 7 0x00031C00 1K
[¥] Sector 8 000082000 1K
) [v] Sector 9 000082400 1K
] M Sector 10 0x00082800 1K
[v] Sector 11 0x00082C00 1K
[¥] Sector 12 000083000 1K
[Sector 13 000083400 1K
[13ector 14 000083800 1K
[Sector 15 0x00083C00 1K
[13ector 16 000084000 1K
CSM password O Sector 17 0x00084400 1K
[13ector 18 000084800 1K
[Sector 19 0x00034C00 1K
Unlock CSM [Sector 20 000085000 1K
[Sector 21 000085400 1K
Reset = Exit ‘ Exit Used ‘ Mot Used ‘ All ‘ Mone ‘

Checking the validity of hex file .. .OK

Please follow below sequence.

step 1 : If necessary, set the CSM key values and unlock CSM by using 'CSM password' and 'Unlock
CSM' buttons
step 2 : Select the flash sector to be erased. Use 'All', 'None', 'Used’, 'Not Used' buttons. Or click the
checkbox of sectors.

All sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.
step 3 : When the buttons (Erase, Blank, Program+Verify, Verify) are clicked first time, MCU enters to
single boot mode after reset.
step 4 : Execute necessary flash actions.

note) It programs the supplied data portion in flash along with automatically generated
ECC(Error Correction Code).
step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program
starts.

8.3.3STM32
MCU menu (ST STM32)

177

easyDSP help

2 RAM Booting Alt+R
< FlashROM Alt+F
I'_"] Reload *.out

) Reset MCU
Reset Communication
0. Pause Communication

? Communication Status

'RAM Booting' menu

is for booting to RAM area only (NO flashrom area). During RAM booting, communications in all
windows are temporarily paused.

5Th32 RAM booting X

Operation

 Writing RAM > Boot > Exit | Wiiting RAM > Verifying RAM > Boot > Exit

‘ Exit ‘

Checking memory region .. OK

'Boot' button starts booting operation. First it is checked if user program is appropriate for RAM booting.
If it fails, booting operation stops.

In case the user program is re-compiled in the meantime, easyDSP detects it and asks you whether
you will use new program.

Before action, easyDSP check MCU's bootloader version and display it on the title bar of window.

5TM32 RAM booting : BLID = 0x90 >

Operation

‘ - sTOP M

Writing RAM @ 0x20004FF8 - 0x200050F7 ...

'Stop' button stops any ongoing activity.
Note that RAM booting is not supported for dual core MCU.

'Flash ROM' menu

It programs onchip flash of MCU with user program. Access to OTP memory, Data memory and option
byte is not supported.

Its functionality could be limited with activated Trust Zone or Secure MPU.

Note that the communication in other windows are temporarily paused.

178

easyDSP help

STM32GOB 1xE(SWAP_BANK=1) flash programmer : BL Id = 0x92
Operation Page Selection to be Erased
[Freeze
Erase > Program > Reset > Exit Select | Index | Start Address | Size |
0 0x08000000 2K
)) 1 0x08000800 2K
Erase > Program = Verify = Reset » Exit 2 008001000 2K
3 0x08001800 2K
) 4 0x08002000 2K
Erase Erase chip 5 0x08002800 oK
6 0x08003000 2K
Proaram 7 0x08003800 2K
E 5 0x08004000 2K
9 0x08004800 2K
Verify 10 0x08005000 2K
11 0x08005800 2K
12 0x08006000 2K
13 0x08006800 2K
14 0x08007000 2K
15 0x08007800 2K
Option .. 16 0x08008000 2K
17 0x08008800 2K
Reset = Exit ‘ Exit All ‘ Mone Used ‘ Mot Used

Verifying flash @ 0x0807F800 - 0x0807F827 ... OK
Ssec elapsed

Please follow below sequence.

step 1 : Select the flash pages to be erased. Use 'All', 'None', 'Used’, 'Not Used' buttons. Or click the
checkboxes of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.

Freeze checkbox disables the sector selection.
step 2 : If 'Option..." button is enabled, click it and select the proper option.

For example, you choose (not change) SWAP_BANK bit status for STM32G0B1.

Since the option is saved, you can choose option only when change.
step 3 : When the buttons (‘Program’, ‘Verify’, 'Erase' or 'Erase chip') are clicked first time, MCU enters to
bootload mode after reset.
step 4 : Execute necessary flash actions.

'Erase chip' erases all the flash in the MCU regardless of selected check box.
step 5 : When exiting this dialog box, use 'Reset > Exit' button. It makes MCU reset and boot with
flash. And user program starts.

If you exit this dialog box without MCU reset, MCU still stay in the bootload mode.

8.3.4 S32
MCU menu (NXP S32)

179

easyDSP help

EAM Booting Alt+R
e ElashROM Alt+F
I‘."'.I Reload *.out

) Reset MCLU
Reset Communication
9. Pause Communication

? Communication Status

RAM Booting menu

This menu is not supported.

Flash ROM menu
NOTE : this menu is working only when EZ_BOOTLOADER_USE is defined as 1 in the easyS32**.h file.
For detailes, refer to this page.

It programs onchip flash of MCU with user program. During this operation, the monitoring of

easyDSP is temporarily paused.
Note that you have to disable any flash related protection feature in the MCU while using this menu.

180

S32_Setting_Eng.htm

easyDSP help

£ rla gramime
Operation Sector selection for erasing
[Freeze
Erase > Program > Reset > Exit Select Start Address Size |
p-flash sector 0 0x00000000 2K
[v] p-flash sector 1 0x00000800 2K
Erase [¥] pflash sector 2 0x00001000 2K
pflash sector 3 000001800 2K
[¥] pflash sector 4 0x00002000 2K
pflash sector 5 000002800 2K
Program p-flash sector 6 0x00003000 2K
pflash sector 7 000003800 2K
[#] pflash sector 8 0x00004000 2K
) pflash sector 9 000004800 2K
LI [p-fash sector 10 0x00005000 2K
[¥] pflash sector 11 0x00005800 2K
[#] pflash sector 12 0x00006000 2K
[¥] pflash sector 13 0x00006800 2K
[#] pflash sector 14 0x00007000 2K
[¥] pflash sector 14 0x00007800 2K
[¥l p-flash sector 16 0x00008000 2K
[pflash sector 17 0x00008800 2K
[Jp-flash sector 18 000009000 2K
[pflash sector 19 0x00009800 2K
[pflash sector 20 0x00004000 2K
[Toflash sector 21 0x0000A800 2K
‘ Exit Used ‘ Mot Used ‘ All ‘ Mone ‘

Checking the validity of hex file ._.OK

]
L

step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used’, 'Not Used' buttons. Or click the
checkbox of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.

Freeze checkbox disables the sector selection.
step 2 :When the buttons (Erase, Program, Verify) are clicked first time, MCU enters to bootloade
(easyDSP_boot() function) after reset.
step 3 : Execute necessary flash actions. 'Blank' button is disabled.
step 4 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program
starts.

Note :

To program flash, the bootloader should be provided since there is no ROM bootloader in this MCU. The
bootloader easyDSP provides is the function (name : easyDSP_boot) and it resides in the user program.
Therefore it can program flash only when it is already programmed in the flash. In case flash is empty
or flash doesn't have easyDSP bootloader, you can't enter into the bootloader and will see the message
below. In this case, you have to use the debugger to program flash. And in same principle, you have to

181

easyDSP help

use debugger to program easyDSP bootloader into flash at the beginning.
-easyDSP x

I Bootloader was not entered !

8.3.5 AM263x
2, RAM Booting Alt+R
= FlashROM Alt+F

St
I‘."] Reload *.out

) Reset MCU
Reset Cammunication
0. Pause Communication

? Communication Status

'RAM Booting' menu

It is for MCU booting to RAM area only (NO flashrom area) by using TI SBL UART mechanism.
During RAM booting, easyDSP monitoring in all windows is temporarily paused.

AM263x RAM booting X

Application image | C:\Users\chundaew\cdw\easyDSP\Program2\TI_AM2x\AM2634_LED_Blinky\Debug\AM2634_LED_Blinky.appimage
SBL UART

SBL image | C:\Users\chundaew\cdw\easyDSP\Program2\TI_AM2x\sbl_uart_am263._\sbl_uart_am263x-lp_sdk_09_00_00_35 timage

Baudrate |230400

Operation

RAM Boot = Exit Exit

Ready ...

easyDSP doesn't provide SBL UART image file. It provides the method for RAM booting using the given
SBL UART image file from either TI or your own.
Please follow below steps.

step 1 : Please select the application image file to be downloaded to RAM. By default, the app image
file which easyDSP is using is selected. But you can change it by clicking 'Application image' button.
step 2 : Please choose SBL UART image file via 'SBL image' button and then input the baudrate of SBL
UART.

If you use the prebuilt SBL by TI (the files located in
C:\ti\mcu_plus_sdk_am263x_09_00_00_35\tools\boot\sbl_prebuilt folder for example), set the
baudrate to 115200.

If you use your own SBL UART, set the baudrate according to your own SBL UART.

182

easyDSP help

step 3 : 'RAM Boot > Exit' button starts booting operation. In case the user program is re-compiled in
the meantime, easyDSP detects it and asks you whether you will use new program.
'Stop' button stops any ongoing activity.

'Flash ROM' menu

It programs user program to SPI flash. easyDSP monitoring in all windows is temporarily paused and
below dialog box appears.

AM263x Flash Programming *
Application

Image file | C:\Users\chundaew\cdw\easyDSP\Program2\TI_AM2x\AM2634_LED_Blinky\Debug\AM2634_LED_Blinky.ez_appimage

{

SBL UART Uniflash
Image file | C:ti\meu_plus_sdk_am263x_09 00 _00_35tools\boot\sbl_prebuilt\am263x-Ip\sbl_uart_uniflash.release timage

Baudrate |115200

SBL QSPI

t

Image file | C:tivmcu_plus_sdk_am263x_09_00_00_35\tools\boot\sbl_prebuilt\am263x-p\sbl_gspi_release timage

!

Application image offset in flash : 0x |80000 Flashing SBL QSFI ‘ Verifying SBL QSPI ‘

Operation

Flashing » Reset = Exit Flashing ‘ Werify ‘ Erase ‘ ‘ Reset » Exit ‘ Exit ‘
Ready ...

easyDSP doesn't provide SBL image files themself. It provides the method for downloading SBL and
flashing the application using the given SBL image files from either TI (prebuilt SBL) or your own.
Please follow below steps.

step 1 : Please select the application image file to be downloaded to SPI flash. By default, the app
image file which easyDSP is using is selected. But you can change it by clicking 'image file' button.

Please note that easyDSP generates app image file (file extension = ez.appimage) from *.rprc
files created by IDE.
step 2 : Please choose SBL UART Uniflash image file via 'image file' button and then input the baudrate
of the SBL.

If you use the prebuilt SBL by TI (the files located in
C:\ti\mcu_plus_sdk_am263x_09_00_00_35\tools\boot\sbl_prebuilt folder for example), set the
baudrate to 115200.

If you use your own SBL, set the baudrate according to your own SBL.
step 3 : Please choose SBL QSPI image file via 'image file' button. And set the offset where the app
image will be written to SPI flash.

For prebuilt SBL by TI, the offset is 0x80000. For your own SBL, set the offset accordingly.
step 4 : Flashing SBL QSPI by clicking 'Flashing SBL QSPI' button. Once done, not required anymore
until you change the SBL QSPI.

Once all set until step 4, you don't need to repeat the steps.

step 5 : Execute necessary flash actions by clicking buttons in the 'Operation' area.
When the buttons (‘Flashing', ‘Verify’ or 'Erase') are clicked first time, MCU enters to boot mode

183

easyDSP help

after reset and SBL UART Uniflash is downloaded and runs.

Flashing is the successive action of Erase > Program > Verify. So, Erasing or Verifying
before/after flashing is optional.

Note that flashing and verifying action is done in 192kB block unit.
step 6 : When exiting this dialog box, use 'Reset > Exit' button. It makes MCU reset and boot with
QSPI (4S) - Quad Read Mode. And user program starts.

If you exit this dialog box without MCU reset, MCU still stay in SBL and the easyDSP monitoring
will fail.

8.3.6 TMA4C
MCU menu (TI TM4C)

EAM Booting Alt+R
e ElashROM Alt+F
I‘."'.I Reload *.out

@) Reset MCU
Reset Communication
9. Pause Communication

? Communication Status

RAM Booting menu

This menu is not supported.
Flash ROM menu

It programs onchip flash of MCU with user program. Note that the monitoring of easyDSP is paused
with this menu.

184

easyDSP help

| TMAC Flash Programmer x|
| ~Operation —Sector selection for erasing
' ™ Freeze
Erns B SR Select | Start Address | Size | |
[¥] block 0 0x00000000 1K
[#] block 1 0x00000400 1K
[¥] block 2 0x00000800 1K
Erase [#] block 3 0x00000C00 1K
[v] block 4 0x00001000 1K
[#] block & 0x00001400 1K
Program [#] block 6 0x00001800 1K
[Cblock 7 0x00001C00 1K
[block 8 0x00002000 1K
[Jblock 9 0x00002400 1K
Verify (with easyDSP) [block 10 0x00002800 1K
[block 11 0x00002C00 1K
[block 12 0x00003000 1K
STOR [Jblock 13 0x00003400 1K
[block 14 0x00003800 1K
Reset = Exit Exit Used Mot Used All MNone
Checking the validity of hex file ._.OK

Please follow below sequence :
step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used’, 'Not Used' buttons. Or click the
checkbox of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.

Freeze checkbox disables the sector selection.
step 2 : When the buttons (Erase, Program) are clicked first time, MCU enters to ROM boot loader
after reset.
step 3 : Execute necessary flash actions.
step 4 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program
starts.

Note : Since MCU ROM boot loader doesn't support verify function, easyDSP provides 'Verify (with
easyDSP)' button instead. This is verification of flash contents by using easyDSP monitoring, not by
ROM boot loader. This button is disabled once MCU enters ROM boot loader.

8.3.7 MSPMO

% RAM Booting Alt+R
< FlashROM Alt+F

I‘."] Reload *.out

) Reset MCU
Reset Communication
0. Pause Communication

? Communication Status

185

easyDSP help
RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs MAIN flash memory region of MCU with user program.

Please disable any flash related protection feature in the MCU while using this menu.

Since easyDSP can't support NONMAIN flash memory region (such as BCR and BSL configuration area),
please use the debugger or any other tool to program NONMAIN flash.

When this menu is activated, the monitoring of easyDSP is temporarily paused.

MSPMO flash programmer

— Operation —Sector Selection to be Erased
[” Freeze
Erase = Program = Reset > Exit | Type Start Address Size |
sector 0 0x00000000 1K
. . sector 1 000000400 1K
Erase > Program = Verify > Reset = Bxit cector 2 0x00000800 1K
sector 3 0x00000C00 1K
Erase sectord 0x00001000 1K
sector & 0x000071400 1K
sector & 0x00001800 1K
Pragram sector 7 0x00001C00 1K
sector 8 0x00002000 1K
sector 8 0x00002400 1K
Verify [] sector10 0x00002800 1K
[0 sector11 0x00002C00 1K
sector 12 0x00003000 1K
STOR Il sector 13 0x00003400 1K
[0 sector 14 0x00003800 1K
Rezal B - All None Used | Not Used
—256-bit BSL access password
FF
Checking the validity of hex file .__OK

Please follow below sequence.

step 1 : Set the 32 bytes password to enter bootstrap mode. It is all OxFF at TI production state.
If you set them in SysConfig like below,

186

easyDSP help

Bootstrap Loader (BSL) Configuration

BSL Access|0] 0x11223344
BSL Access[1] 0x55667788
BSL Access[Z] OxAABBCCDD
BSL Access[3] 0xDEADFACE
BSL Access[4] 0xFFFFFFFF
BSL Access[3] 0xFFFFFFFF
BSL Access[6] 0xFFFFFFFF
BSL Access[7] 0xFFFFFFFF

you can input like below.
256-bit BSL access password

| 1122334455667788AABBCCDDDEADFACEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

step 2 : Select the flash sector to be erased. Use 'All', 'None', 'Used’, 'Not Used' buttons. Or click the
checkbox of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.

Freeze checkbox disables the sector selection.
step 3 : When the buttons (Erase, Program, Verify) are clicked first time, MCU enters to bootstrap
mode after reset.
step 4 : Execute necessary flash actions.

'Verify' button acts differently depending on the 'BSL Read Out Enable' value in the SysConfig
> BSL Configuration tab.

If read out is disabled (like TI factory default), it checks 1024 bytes CRC without reading the
flash memory.

If read out is enabled, it reads the flash memory.
step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program
starts.

8.3.8 PSoC4

RAM Booting Alt+R
o ElashROM Alt+F
I‘."] Reload *.out

) Reset MCU
Reset Communication
0. Pause Communication

? Communication Status

RAM Booting menu

This menu is not supported.

Flash ROM menu
187

easyDSP help

It programs onchip flash of MCU with user program only for single-application bootloader configuration.
Note that the monitoring of easyDSP is temporarily paused.

PSoC flash prograrmmer : Silicon 1D = 0x193C1148, Silicon Rev = 0x00, Bootloader Ver = 0x01013C >
Operation Page Selection to be Erased
Erase + Program > Start User Program | A”Eﬂ I:?~'3""“’| Start Address | Size |A
O o 0 0x00000000 128
O o 1 0x00000080 128
E + P = Verify > Start User Program O o 2 0x00000100 128
O o 3 000000180 128
O o 4 0:00000200 128
Erase O o 5 000000280 128
O o B 0x00000300 128
O o 7 000000380 128
Erase + Program O o § 0x00000400 128
O o 9 000000480 128
_ O o 10 0x00000500 128
Verify 0 0 11 0x00000580 128
O o 12 0x00000600 128
O o 13 0x00000680 128
O o 14 0=00000700 128
O o 15 0x00000780 128 W
Tl Al | None | Used | Not Used |
Bootloader Security Key
[~ Use security key 0x | | | | | |
Verifying flash @ array=0, row=255 [(0x7F80-0x7FFF) ... OK
2sec elapsed

Please follow below sequence.

step 1 : Select the flash array and row to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or
click the checkbox of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.
step 2 : If bootloader security key is used, please input the key value after clicking 'Use security key'
button.
step 3 : When the buttons (Erase, Erase+Program, Verify) are clicked first time, MCU enters to
bootloader mode after reset.

Also silicon ID, selicon revision, bootloader version is displayed in the title bar.
step 4 : Execute necessary flash actions.
step 5 : Click 'Start User Program' button when exiting this dialog box. It makes MCU reset and
user program starts.
note : erasing the flash where bootloader program is located is not enabled.

8.3.9 XMC1

MCU menu (Infineon XMC1)
188

easyDSP help

EAM Booting Alt+R
e ElashROM Alt+F

I‘."'.I Reload *.out

) Reset MCLU
Reset Communication
9. Pause Communication

? Communication Status

RAM Booting menu

This menu is disabled.

Flash ROM menu

This menu is disabled.

8.3.10 XMC4
MCU menu (Infineon XMC4)

EAM Booting Alt+R
o ElashROM Alt+F
I‘."] Reload *.out

) Reset MCU
Reset Communication
0. Pause Communication

? Communication Status

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs onchip flash of MCU with user program. Note that the monitoring of easyDSP is
temporarily paused.

189

easyDSP help

AMC flash programmer >
— Operation —Sector Selection to be Erased or Protected ——

Erase > Program + Verify > Reset > Exit | Secturl Start Addressl Size | Erased

0 0x0C000000 16K M

1 0x0C004000 1BK M

Erase 2 0x0C00B000 16K M

3 0x0C00C000 16K M

4 0x0C010000 16K M

Program + Verify 5 0x0C014000 16K M

G 0x0C018000 16K M

7 0x0C0O1C000 16K M

Verify 8 0:<0C020000 128K M

9 0x0C040000 256K M

O 10 0x0C080000 256K M

STOR O N 0:0COC0000 256K M

I [0x0C100000 256K M

_ 0 13 0x0C140000 256K M

Reset > Exit 0 14 0x0C180000 256K N

O 15 0:0C1C0000 256K M

—Protection
Password 1 : Ox
Password 2 - Ox < »
Write Protect Unprotect | Al | MNone Used Mot Used
Checking the validity of hex file _..OK

Please follow below sequence.

step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used’, 'Not Used' buttons. Or click the
checkbox of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.
step 2 : If necessary, use write-protection.
step 3 : When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to
bootloader mode after reset.
step 4 : Execute necessary flash actions.
step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program
starts.
NOTE) programming to not erased sector may causes malfunction.

8.3.11 RA
MCU menu (Renesas RA)

190

easyDSP help

% RAM Booting Alt+R
v FlashROM Alt+F

I‘."'.I Reload *.out

) Reset MCLU
Reset Communication
9. Pause Communication

? Communication Status

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs onchip flash of MCU with user program. Note that flash programming is not supported
for RAO series.

Note that the programming would be not available in case security or protection is set to the memory.
When clicked, the monitoring of easyDSP is temporarily paused and dialog will be present as below.

RA flash programmer x
— Operation —Sector Selection to be Erased
™ Freeze
Erase > Program > Reset > Bxit | Type | Block | Start Address | Size |
code 0 0x00000000 2K
. . code 1 0x00000500 2K
Erase » Program = Verify > Reset = Bxit code 9 0x00001000 oK
code 3 0x00001500 2K
Erase [0 code 4 000002000 2K
[code g 0x00002800 2K
[0 code 6 0x00003000 2K
Program [code T 000003800 2K
[0 code 3 0x00004000 2K
[0 code 9 0x00004800 2K
Verify [code 10 0x00005000 2K
[0 code 11 0x00005500 2K
[0 code 12 000006000 2K
STOR Il [0 code 13 0x00006800 2K
[code 14 000007000 2K
Resel - Exlr = Al | None Used | Not Used
—Protection (used when required)
ID code (32 hex characters, MSB first) : I

Checking the validity of hex file .__OK

-]

Please follow below sequence.

step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

191

easyDSP help

checkbox of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.

Freeze checkbox disables the sector selection.

Note that erasing of option flash is not performed since it is not necessary.
step 2 : When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to
bootmode after reset.

For MCU without DLM(Device Lifecycle Management), ID code will be used to unlock MCU if
required.

For MCU with DLM, DLM state transition is not supported.
step 3 : Execute necessary flash actions.
step 4 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program
starts.

8.3.12 RX
MCU menu (Renesas RX)

BAM Booting Alt+R
e FlashROM Alt+F
I‘."'.I Reload *.out

) Reset MCLU
Reset Communication
9. Pause Communication

? Communication Status

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs onchip flash of MCU with user program except the protected area by area protection or
trusted memory.

Therefore please disable any flash related protection feature in the MCU while using this menu.
When this menu is activated, the monitoring of easyDSP is temporarily paused.

192

| RX flash programmer

easyDSP help

Operation Sector Selection to be Erased
[Freeze
Erase > Program > Reset > Exit | Type Start Address | Size |
user block 0 0xFFFFFCO00 1K I
Erase = Program > Verify = Reset > Exit E 522[E:EEE; gi:z:zii:zjgg 1?
[userblock3 O0xFFFFF000 1K
Erase [wuserblock4 0xFFFFECOQ 1K
[userblocks 0xFFFFES00 1K
| [0 userblock& 0xFFFFE400 1K
! Program [wuserblock7 0xFFFFEDDOD 1k
[[0 userblock8 O0xFFFFDCOO 1K
[wuserblockd 0xFFFFD&00 1K
Verify [] wuserblock 10 0xFFFFD400 1k
[0 userblock 11 0xFFFFDO00 1K
[] wuserblock 12 0xFFFFCCO0 1K
[0 userblock 13 0xFFFFCB00 1K
[] wuserblock 14 0xFFFFC400 1K
Exit Al ‘ None ‘ Used ‘ Not Used ‘

|0 Code Protection
Control code and 10 code 1 to 15 : |45E|1[12[]3[]4USUEUTUBUSUAUBUCUDUEUF

Checking the validity of hex file .. OK

Please follow below sequence.

step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the
checkbox of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.

Freeze checkbox disables the sector selection.
step 2 : When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to
bootmode after reset.
step 3 : Execute necessary flash actions.
step 4 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program
starts.

If boot mode ID code protection is enabled in the MCU, MCU enters to boot mode only when ID code
you input matches.

If you set the ID code like below in the Smart Configurator, please set the ID code in the flash dialog
as above.

193

easyDSP help

Software component configuration

Compon... (33 75 —| |+ Configure
-
L Property Value
|t‘;"PEfi|tEFtEXt | v Configurations
v (= Startup # User stack setting 2 stacks
v (= Generic # User stack size w1000
.‘_ r_bsp # Interrupt stack size One 00
v [Drivers # Heap size 0400
v (&= Communications # Initializes C input and output library functions Disable
2__ r_sci_mx # Enable user stdic charget function Use BSP charget(} function
v (= Middleware #
v (= Generic # Enable user stdio charput function Use BSP charput() function
& rbyteq # : :
Processor Mode Stay in Supervisor mode
D code 1 043010203
IDcode2 004050607
D code 3 (08030408
IDcoded Ox0CODOEOF
Note :

1. All the flash contents are erased before entering to boot mode if the control ID is neither 0x45 nor
0x52 for RX100 and RX200 MCU series.

2. For RX64M, RX660, RX66T, RX71M and RX72T series, programming of option setting memory is not
supported.

8.3.13 TX, TXZ3

EAM Booting Alt+R
e ElashROM Alt+F
I‘."'.I Reload *.out

) Reset MCLU
Reset Communication
9. Pause Communication

? Communication Status

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs onchip flash of MCU with user program. Note that the monitoring of easyDSP is
temporarily paused.

194

easyDSP help

Taoshiba TXZ Flash Programmer x

—Operation —Sector selection for erasing

Select | Start Address | Size | Erased | ~

[¥lcode : page 0 0x00000000 4K
[#] code : page 1 0x00001000 4K
[¥l code - page 2 0x00002000 4K
Erase Blarik [Mlcode - page 3 0x00003000 4K
[Vl code - page 4 0x00004000 4K
[¥] code : page & 0x00005000 4K
[Jcode : page 6 0x00006000 4K
[Jcode : page 7 0x00007000 4K
[Jcode - page 8 0x00008000 4K
[Jcode : page 9 0x00009000 4K
Verify [code - page 10 0x0000A000 4K
[#lcode : page 11 0x0000B000 4K
[¥lcode - page 12 0x0000C000 4K
STOR [#]code : page 13 0x0000D000 4K
[#lcode - page 14 Ox0000E000 4K
[#lcode : page 15 0x0000F000 4K
[#lcode - page 16 0x00010000 4K
Password [l code : page 17 0x00011000 4K
[Jcode : page 18 0x00012000 4K
[Jcode : page 19 0x00013000 4K
[Jcode : page 20 0x00014000 4K
[Jcode : page 21 0x00015000 4K

Erase = Program + Verify > Reset = Exit

Program + Verify

Protect

EEE E E E E E E E EEEEEEEE2E=E2=2==E2E22

Reset » Exit | Exit Used | Mot Used | All | MNone

Checking the validity of hex file ._.OK

]

Please follow below sequence.
step 1 : By clicking 'Password' button, set the password which is required to enter single boot mode.

For TX series, input 12 bytes value (default = FFFFFFFFFFFFFFFFFFFFFFFF) in below dialog box.
Password x

Passwaord for boot mode (12 bytes, hex) FFFFFFFFFFFFFFFFFFFFFFFF OK

For TXZ3 series, input related values in below dialog box.

195

easyDSP help

Password for THZ hod

Password length in bytes (8 to 255) |12
Address at the password length is located (x |UUU1FUUU

Address at the password is located 0 |UUU1FEIEI1

Password (hex) |0102030405060708090A0B0C

Erase Chip 0K

step 2 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the
checkbox of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.
step 3 : When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to single
boot mode after reset.
step 4 : Execute necessary flash actions.
step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program
starts.
Note) programming to not erased sector may causes malfunction.
Note) Blank and Protect buttons are disabled.

8.3.14 LPC
MCU menu (NXP LPC1x00)

EAM Booting Alt+R
S ElashROM Alt+F
I'_';.I Reload *.out

) Reset MCLU
Reset Communication
9. Pause Communication

? Communication Status

RAM Booting menu

This menu is disabled.

Flash ROM menu

It programs onchip flash of MCU with user program. During this operation, the monitoring of

easyDSP is temporarily paused.

Note that you have to disable any flash related protection feature in the MCU while using this menu.
196

easyDSP help

LPC flash programmer x
| - Operation Sector Selection to be Erased
[Freeze
Erase > Program > Reset > Exit | Bank | Sector | Start Address Size
A 0 0x1A000000 8K
Erase > Program = Verify > Reset = Exit i ; gi}iggiggg SE
o A 3 0x1A006000 8K
Erase o oA 4 0x1A008000 BK
o oA 5 0x1A00A000 8K
o oA B 0:1A00C000 Bk
e o oA 7 0x1A00E000 Bk
o A 8 0x1A010000 64K
o oA 9 0x1A020000 B4K
Verify o oA 10 0314030000 64K
o oA 1 014040000 64K
o oA 12 0x1A050000 64K
0o A 13 0x1A060000 64K
o oA 14 0:1A070000 B4K
O B 0 018000000 Bk
Exit O B 1 018002000 Bk
O B 2 0x1B004000 BK
O B 3 0x1B006000 8K
m nm 4 M RNNRANN Ak
Active Flash Bank (if flash has two banks)
& Bank A Bank B All ‘ MNaone Used ‘ MNot Used ‘

Checking the validity of hex file .__OK

Please follow below sequence.
step 1 : In case MCU has two flash banks (for example, part of LPC1800 series), select the active flash
bank where your program will run after reset.
step 2 : Select the flash sector to be erased. Use 'All', 'None', 'Used’, 'Not Used' buttons. Or click the
checkbox of sectors.

All the sectors used in the user program are selected with 'Used' button. The other way around
with 'Not used' button.

Freeze checkbox disables the sector selection.
step 3 :When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to
bootmode after reset.
step 4 : Execute necessary flash actions.
step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program
starts.

8.4 Tools

_4 Open Project Folder

Editor
Calculator

You can use various tools.
197

easyDSP help

'Open Project Directory' : opens the folder of the active project.
'Editor': runs the editor which you set before in project settings.
'Calculator' : runs the calculator of Windows.

8.5 Window

|Pro_iect Edit MCU Window Tools Help

Mew Window ¥ E Command
Watch
Cascade
_ Plot
Tile Horizonally
_ Chart
Tile Vertically
Becorder
Arrange lcons M
Close Al —emen
@ Array
Tree

Opening/closing/arranging windows.

8.6 Help

Help menu

? Help...
Help(Korean)...

About easyDSP...

'Help..." : Opens this help file
'About easyDSP..." : basic information of easyDSP

198

easyDSP help

9. Windows

9.1 Command

[=] command-1 =R ==
I = i L |

¥_struct.iarray = array -
x_structiarray[0] = 00033

[dX =0
ulRunningCount=880727106

m

ezFlash_fstStatus=struct
ezFlash_fstStatus FirstFailaddr=3251018715
ezFlash_fstStatus. ExpectedData=46415

Command window is designed for writing or reading variables. The available commands are found by
typing 'help' command. All commands are executed by enter-key input.

* Tool bar(=TTt

** Update the block. If you select the block of commands by dragging mouse and then press this
button, the commands which belong to the block are updated. If no block selected, the current line is
updated. You can do it by clicking right button of mouse.

=1

* Run the block. If you select the block of commands by dragging mouse and then press this button,
the commands which belong to the block are executed. If no block selected, the current line is
executed.

=< Insert new line without running command. When you press enter key, the corresponding line is
running as command. If you use this tool button, new line is inserted without running command. Same
as 'Ctrl-Enter' key press.

T Read command file. Copy the file to the command window. No execution. You can also type 'r
filename' in the command window.

1
T Load command file. command file is the set of commands. Frequently used commands can be
saved into command file and then use this function. You can also type 'l filename' in the command
window.

1 Save the block of lines to file. Save the selected block of commands as a file. Afterwards, you load
this file by 'l' commands.

* Commands :

Caution:
1: The number of character in one command line should not exceed 300
2: all commands should be small-character

199

easyDSP help

Decimal system

dec var decimal display (default)
hex var hex-decimal display
bin var binary display

Assign and Display
var = display the value of var
&var = display the address of var

In case var is pointer to basic type,
*var = display the value of variable pointed by pointer var
note) not supported for Arm MCU

In case var is pointer to struct/union type,
(*var).x = display the value of variable x pointed by pointer var
note) not supported for Arm MCU

assign value to var
Ox***(hex-decimal) form is supported
var = number |If var is float type, following dimension form is supported
3e-3, 23K, 23m, 0.34p
For dimension usage, refer to 'watch window'

assign the address of var2 into varl

varl = &var2 |1 should be int type or unsigned int type

In case var is either char or unsigned char type, printable character can be assgined
such as 'A'. To display its value also with printable character, please check the option
'Display printable character ..." optino in the 'miscellaneous' tab in the project setting.

var =
'character’

assign the result of exp into var
var = <exp> |Example of expression:
<e/pi-pite>, <1/In(x)/x>, <exp(-1/pow(x/100,2))>

*var = In case var is pointer to basic type variable, assign number or expression to the
number or variable pointed by pointer var

<exp> note) not supported for Arm MCU

(*var).x = In case var is pointer to struct or union variable, assign number or expression to the
number or variable x pointed by pointer var

<exp> note) not supported for Arm MCU

var = Q-format assignment.

numberQn n at Qn is from 1 to 15 in case var is 16bit integer.

ex. aa = n at Qn is from 1 to 31 in case var is 32bit integer.

3.3Q15 number could be float.

;3:11=t>erQ If you set default Q number to var, then you can omit to describe it. For example, if var
ex. aa = 3.3Q has default Q number 12, then var=3.14Q has the same effect as var=3.14Q12.

200

easyDSP help

var =
<exp>Qn expression in <> is automatically calculated and then processed as in number
var = <exp>Q

Others
clear/clear all command window context
// one line comment

help |list all commands

| file load command file (default extension = cmd). That is, execute the contexts of command file by
line-to-line.
r file read command file. Copy the file to the command window. No execution.

skip During executing command file, the commands after 'skip' command are ignored.

* Dimension / Q assignment functionality

Dimension format (ex, 2.3m, 400p) is for writing/reading float type variables.

Q format (ex, 3.14Q15) is for writing/reading integer type variables and is available only for 2x MCU
series.

You can set their default configuration for each variables only in 'Watch' window. For more details,
please refer to the 'Watch' window section in this help.

9.2 Watch

Watch-1 =8 (EcE

S| X~ v T 2 sec -

H Mame a Value | Type W Address W Dimensi...
ezDSP _Version_5CI 1060 uns int O D000AS00
ezD5P_ulAddr O 0000AS28 uns long (x0000AS28
ubdTest 6 uintsd t (s D000B4GE
ubdaChartWindowTest array uinted_t [256] O D00OBO00
u32Counter EN uint32_t OheDO00AS3S
IPC_Instance[0].IPC_Flag_Ctr_Reg O DD0SCEDD IPC_Flag_Ctr_Reg_t™ Cac000S0000
fTest 3.000000238K float O DDD0BAGC Kilo(K)

You can read from or write to the variables in watch window. Note that only visible items are updated
to reduce the communication burden of MCU.
The function of buttons are ..

= | =X M Tllzsec -

= (toggled) : displays all variables or only registered variables

: registers variable (same to 'Insert' key)

= delete variable (same to 'Delete’ key)
: move up variable

: move down variable

201

T

: loads

easyDSP help

the list of registered variables from the text file. The value of variables are not changed due

to this action.

1

: saves the list of registered variables to text file. It saves the value of variables too. You can load

this file in Command window so that you change variables to the value in current watch window. This
action helps handle the variables related to board settings or event recording.

Some details for each column are.....

Column

Name

Value

Type

Address

Dimension

Function

It displays variable name.

You can use 'value at address operator (*)' for TI C28x MCU. For example,
*pointer variable when pointing to basic type
(*pointer variable) when pointing to structure/union type

It displays variable value.

Mouse right click toggles the display mode (decimal => hex-decimal => binary =>
decimal....). Hex-decimal number begins with "0x". Binary number begins with "0b". But
display mode of pointer variable is fixed to hex-decimal.

If you specify dimension, the value is displayed as like 100u, 1K, 1p and so on. If you
specify Q-format, the value is displayed such as 3.14Q15.

You can change the variable by clicking left mouse button or pressing enter-key. Either
number or <expression> is possible as an input format.

Various format is supported when you input the value to the variable. Please check the help
file of 'Command' window help file.

It displays the type of variable.
It displays the address of variable.
Depending on the variable type, this column can display either dimension or Q format.

Dimension

If the variable is floating-point type, you can set the dimension of variable.
You can change the dimension by clicking left mouse button. You can also use dimension
when writing to the variable. For example, writing "30u" is same as "0.0003".

dimension p = pico (10712)
dimension n = nano (107?)
dimension u = micro (107°)
dimension m = mili (10-3)

dimension K = Kilo (103)

dimension M = Mega (10°)
dimension G = Giga (10°)

Q format

If the variable is integer type, you can set the Q format of variable. Q format is

helpful especially to fixed point MCU. QO to Q15 can be applied to 16bit integer variable. QO
to Q30 can be applied to 32bit integer variable.

Once the variable is set by Q-format, it can be read/written as a float type variable. Plot and
Chart window also displays Q-format integer variable as it is a floating-point type.

202

9.3 PI

easyDSP help

- Reading integer variable

if integer variable has QO(default) format , then it is displayed as an integer value.

if integer variable has Q15 format, then it is displayed as fraction number, for example,
'3.14Q15'" with suffix 'Q15".

- Writing integer variable

if integer variable has QO0(default) format, below writing method is possible.
varl = 314
varl = 3.14Q15 (3.14 is converted as Q15 format then written to varl)
varl = <cos(pi/3)>Q15 (Since cos(pi/3) is 0.5, it's same to 0.5Q15)

if integer variable has Qn(n=1-31) format, below writing method is possible.

varl = 3.14Q (3.14 is converted Q format of varl then written to varl)

varl = 3.14Q15 (3.14 is converted Q15 format then written to varl. It doesn't
care for Q-format of varl)

varl = <cos(pi/3)>Q (Since cos(pi/3) is 0.5, it's same to 0.5Q)

varl = <cos(pi/3)>Q31 (Since cos(pi/3) is 0.5, it's same to 0.5Q31)

ot

Plot window
] Plot-1 E=2 =R
| o 41 1
— azDSP_ringBuffer[0] — ezDSP_fHoat — axit — ezDSP_DSP
19 34ed a0q 300
05 324 2] 200 " ‘ 1 [f q r
L] | Ll L |
0 34 104 100 | . | |I' “ . 'I1| rI i] -I' 1.| 'I
s simes w e £ RN
O IR N O 1 0 L LN LT | VLI
ad zeedd a0l Lo | | | . | | | . |
145330 145345 145400 145415 145430 14:5445 145500 145515 14:55:30

This window plots the value of variables in real-time and saves its data for some time. If the dynamics

of the varia

ble is rather slower than the sampling interval, this window will act as an recorder.

The integer variable with Q-format is displayed as it is float type. For example, 32bit integer variable
with Q31 format is displayed within 1 and -1.

Toolbar
T o | &
T . you ca

1 4

n set the variable name, min/max/auto of Y-axis display and display mode. Maximum 8

variables can be displayed in one plot window.

The mini

mum sampling interval is 5msec. easyDSP reads the value of variable in every sampling

interval, then displays it for 'total plot period' duration.

203

easyDSP help

Please note that maximum count of data is limited to 4,294,967,295 per variable. In case
PC memory is not enough, it will be less than that.
Please note that the sampling interval you set is not guaranteed. Most of cases, actual
sampling interval is longer than your setting value especially when the data count is large.
Also timer resolution of Windows systme is roughly 10msec.
The setting can be saved to and loaded from the file by clicking 'Save'/'Load' button.
The colors and symbols are predefined as follows.
channel #1 : red - circle
channel #2 : blue - square
channel #3 : green - triangle
channel #4 : violet - diamond
channel #5 : black - right triangle
channel #6 : weak green - left triangle
channel #7 : grey - '+' shape
channel #8 : orange - 'x' shape

rPIotSetting 23

Channel Scale Display

Name Min Max Auto Symbol Line Visible
#1 |m_uSeq Remove lﬂilﬂ]i l_ rd [v [v
#2 |m_uSeqSeq Remaove IE-U—IEU— I = i~ i~
#3 |m fVdseRef Remove | || [-600 [600 I N R
#4 |m_fVgseRef Remove | || [-600 [600 I N N
#5 |m_fldseRef Remove | || [-100 [100 F v v
#6 |m_flgseRef Remove | || [-100 [100 F N N
#7 |m_fidse Remove | || [-100 [100 F v v
#8 |m_figse Remove | || [-100 [100 v v v v
Time
Sampling interval IW msec Total plot period |1— min
Settings

Load | Save | Cancel 0K ‘

.,

=l [(toggled) : pauses graph / resumes graph.

=, shows all graph data. Its shows all the data stored in memory allocated to support 'Total plot
period'.
g, shows recent data. It shows the latest data fitting to current plot window size.

1 : saves the graph into graphic file (bmp, jpg, png formats) or save the graph data into text file (csv
format as shown below).

204

easyDSP help

m_uSeq

date(year-month-day) [time(hour-min-sec) [time(mili_sec) |elapsed time(mili_sec) [|value
2017-09-04 12:48:42 223 0 2
2017-09-04 12:48:42 359 136 2
2017-09-04 12:48:42 475 252 2
2017-09-04 12:48:42 547 374 2
2017-09-04 12:48:42 722 499 2
2017-09-04 12:48:42 843 625 2
2017-09-04 12:48:42 976 753 2
2017-09-04 12:48:43 a3 875 2
2017-09-04 12:48:43 226 1003 2
2017-09-04 12:48:43 346 1123 2
2017-09-04 12:48:43 470 1247 2
2017-09-04 12:48:43 584 1361 2
2017-09-04 12:48:43 706 1483 2

3 : saves the graph data to record file (file extension = rec). You can open the record file with record

window.

Useful features

- Tooltip function : The data value at the mouse cursor position will be displayed with small box
- If the communication failed with MCU, the corresponding data point is not displayed at all. As shown

below, the line looks broken.
Same when the user intentionally pauses the communication.

230

200

50
W]

- Versatile line display mode by selecting symbol/line/visibility.

— faDatat

—— faData1
] %\ I.':"| ._.)"‘\ .'r'" ‘\b |
AT SAWA 2
100 "‘/ ‘ R\J \ /. '\./{. / h\,,'-f L-N u/ " .’II.I
_ ! ‘ L
430 440 450 460 470

300
200 4
100

.."' ! A ll,-"l. ———F — ".I
P AAAANA L= s AAPNN

W]
420

T
430

T
440

450

T
4e0

205

T
470

easyDSP help

—+— faData
300
200 4 /'1
100 &
I:I T T T T T
420 430 440 450 460 470
+« faData1
300
200 ‘ . L] -* — - ® -
La® "‘- . o '.. *e Teeet ' oeor v, I.‘-ln 1- . *
1004 .. * . $e -. " e o I e e
I:I T T T T T
420 430 440 450 460 470
- X-axis zoom in/out possible with mouse wheeling.
—+— faData
250
200 —
150 ’b____"‘———*—r“""_______.— T
100 %
50
I:I T T T T T
445 448 450 452 454
—+— faData
300
a&,,. Tah) m i 'q L
?ﬁﬁﬂ yT Call il
mn- f 1 i ,‘i
0
380 330 420 480 510 540

- Screen dragging is possible in X-axis direction by dragging mouse. (mouse cursor has special shape
in this mode)

TZZ?% mmfww et mww

206

9.4 Chart

easyDSP help

Chart-1

T3 b

1 1| |205ec ~

(=[O =)

Ged 4

Ged

44 4

2ed 4

-2ed -

137

10

100

300

—»— ezDSP_ringBuffer

—=— @zDSP_ringBuffer[0]

—— ezFlash_Buffer[0]

2001

1001

AV A A Wit
l"] ﬂ'&’ '\

Y

.

20 23

30 40 43

It displays all data of 1-dim array type variable. So, you can use it as an software substitute for the
oscilloscope, if your MCU program samples a certain variable into this array variable.

Writing to the array is not allowed in Chart window.
It displays the Q-format integer variable as its fractional number. (Ex, 32bit integer with Q31 format is
displayed in the range of +1/-1).

Toolbar

"r 20 sec -

T . When clicked, the below dialog box shows up and you can register upto 8 variables and its display

I 1 4

properties.

'Channel' : You can select the one-dimensional array variable.

'Scale' : Select the Y-axis range. 'Auto’ will adjust its scale automatically based on the variable
values in every display.

'Display' : Determines its display mode. The data acquisition keeps going whatever its display

mode is.

'Enable fast reading' :

easyDSP is enough.

The colors and symbols are predefined as follows.
channel #1 : red - circle
channel #2 : blue - square
channel #3 : green - triangle
channel #4 : violet - diamond
channel #5 : black - right triangle
channel #6 : weak green - left triangle
channel #7 : grey - '+' shape
channel #8 : orange - 'x' shape

makes chart update faster

when the MCU resource for communication with

If this option is not working properly, the window becomes empty.

207

easyDSP help

Chart settings ¥
Channel Range Display
Name Count y-Min y.Max
OK
[IPC_Instance[0].IPC_Inthum Remove | [8 [-100 [o WV Auta | | [~ Symbol ¥ Line W Visible
#2 [IPC_Instance[0].IPC_Inthum Remove | [8 [-100 [o WV Auta | | [~ Symbol ¥ Line W Visible
[xa Remove | [10 [[0 ¥ Auto | | [Symbol ¥ Line ¥ Visible —
[xb | WV Auto | | ¥ Symbol ¥ Line ¥ Visible

#5 |uBdalongArray 3072 [o W Auto | W Symbol ¥ Line [Visible

| Remove | [10 [0 [o ¥ Auto | | ¥ Symbol ¥ Line [Visible v Enable fast reading

Remove | [10 [0 [o M Auto | [Symbol ¥ Line ¥ Visible

|

Led Led Lo Led LefLaf Lo L]

#8 ‘ Remove |1U ‘U |(] M Auto ¥ Symbaol ¥ Line [v Visible

. updates graph only for one time. If your data are too large, updating them in every sampling
interval takes so much time. Please use this toolbar in that case.

=l [(toggled) :pauses graph update / resumes graph update.

* 1. shows left-most part of the graph
Lajp shows all graph data.
+

: shows right-most part of the graph.

1 : saves the current graph into graphic file (bmp, jpg, png formats) or save the current graph data
into text file (csv format).

i : saves the graph data to record file (file extension = rec). You can open the record file with record
window.< /FONT >

Useful features

- Please check the link how to use the graph

9.5 Record

Recorder-1 =R
i1 T1

—»— ezDSP_ringBuffer —=— @zDSP_ringBuffer[0]
—— ezFlash_ulZ 1CSMKeys —— ezFlash_ulZ2CSMHKeys[0]

Se9- 48e9y dedy 15

484 4 Ged ad - y I”ll

3ea] 4.4e9 2: 1% || INW‘ ” |]|| ||I {I’!Il l[“ l | |“H|' ' " IH]-| lh’

269 42651 | ’ |! i l l ‘ || L ||' |‘

-1] w“ ||| PPt
od 3sesd el |

T
0 50 UU 250 300 350

It displays the data of record file (extension = rec) which was saved before in either Chart window or

Plot window.

Thus, your first action is opening the record file by clicking T button.

When opening it, all settings you made before was automatically restored i.e. record file, zoom in/out
area and various display mode.

208

Window%20Plot.htm#UsefulFeatures

easyDSP help
Toolbar
T e+ T U

r . When clicked, the below dialog box shows up with the information of record file name and its
saving time. The other part is same to that of either Chart or Plot window.

'Channel' : It just display the variable name and its data count as the record file has. No change
is possible.

'Scale' : Select the Y-axis range. 'Auto' will adjust its scale automatically based on the variable
values in every display.

'Display' : Determines its display mode.

The colors and symbols are predefined as follows.
channel #1 : red - circle
channel #2 : blue - square
channel #3 : green - triangle
channel #4 : violet - diamond
channel #5 : black - right triangle
channel #6 : weak green - left triangle
channel #7 : grey - '+' shape
channel #8 : orange - 'x' shape

Recorder Settings &
Record File : C:\cdw\CIPOS\New product concept\Power Cycle\Design\DSP Program\Combo Control\Debug\8ch plot.rec
Time Stamp : saved at 2017-09-04 03:15:34
Channel Y-axis scale Display
Name Count Min Max o
#1 |[m_uSeq |200 [|10 [~ Auto | ¥ Symbal ¥ Line [Visible
[m_uSeqSeq |200 [|10 [~ Auto | ¥ Symbal ¥ Line [Visible
#3 [m_fVdseRef |200 [|10 [~ Auto | ¥ Symbal ¥ Line [Visible
Cancel
#4 [m_fVgseRef |200 [|10 [~ Auto | ¥ Symbal ¥ Line [Visible
#5 [m_fidseRef |200 [|10 [Auto | ¥ Symbol ¥ Line [Visible
|m_flgseRef [200 o [10 [~ Auto | ¥ Symbol ¥ Line W Visible
#7 |m_fdse |200 o 10 [~ Auto | ¥ Symbol ¥ Line W Visible
#8 |m_flgse |200 o 10 [~ Auto | ¥ Symbol ¥ Line W Visible

A : shows the left-most part of graph.

T : shows all graph data.

X, shows the right-most part of graph.

T : load the record file. This is your first action to use this window.
1

: saves the current graph into graphic file (bmp, jpg, png formats) or save the current graph data
into text file (csv format).

Useful features

- Please check the link how to use the graph

209

Window%20Plot.htm#UsefulFeatures

easyDSP help

9.6 Memory

Common

You can monitor and change the memory under given address. But change of memory is available only
for RAM memory.

Note that only visible items are updated to reduce the communication burden of MCU. So, please
minimize the window size so that the communication burden of MCU could be also minimized.

easyDSP limits the address range according to MCU. In case the adress is limited by easyDSP, the data
of address is displayed as '-' without reading.

NOTE :

1. For Arm core MCU, HardFault is caused by accessing an invalid address or security setting. Please be
careful when setting the address.

2. For a certain STM32 MCU with secure MPU activated, MCU can be stuck after memory access.

o= |[=] =]
Address | 0x70000000 ~| bitwidth {32 ~| [5sec +|
Address +0 +4 +8 +C ASCI A

Ce 70000000 | C3068230 | ADOMBZ30 | 010203A0 | 7C140202 | 0u0uen |
Cee70000010 | D39F2949 743584014 92ATVBIC | FRF23BCCC | La.LZtd..#
(70000020 | 3037904E | 2A00060D | F7E64286 | 0DOI010D | MN.70L.*H..,
(70000030 | 21300005 | 300B3197 | 55030609 | 02130604 | .0.1.0..U.
(70000040 | 0B3153355 | 03060930 | OCOS804535 | 31435302 | US1.0..U...5C1
(e 70000050 | 06OF30171 | 0V045503 | 634EQ20C | EF392077 | .0..U..Mew Yo
O 70000060 | 213166872 | 03061F30 | OCOAQ455 | 72635418 | rk1!0..U... Tex
Coe7OOOOOTO | 49207361 | 7274736E | GEGSEDTS | 2C2E7374 | as Instruments,,
Ce 70000080 | 636E4920 | 3013312E | 55030611 | OAQCOBOM | Inc.1.0..U..

O 70000090 | 41544953 | 40204152 | 0F313543 | 03060030 | SITARA MCUT.0..

O 70000040 DCO30455 | 626C4106 | 31747265 | 081D301F | U.Albert1.0. W
Memor}r—?_ El@
Address |Bez_u32Addr //address | bitwidth [8 v| [Ssec |

Address +0 [+1 | +2 | +3 | +4 | +5| +6 | +7 | +8 | +9 | +A | +B | +C | +0 | +E | +F | ASCII -

Cee70072673 78 26 O7 | 7O OO 00 | OO OO OO Q0| OO |00 | 00| 00 00 OO0 xBLpuw.
Cee70072683 OO0 00 OO | 00 OO Q0 OO |00 OD 00 OO 00|20 00| 00 OO0/ ...
Cee70072693 20 00 OO | OO O1 QO OO OO O1 QO OO |00 |01 0D OO0 OO0

Cee 7007263 OO 00 FO | 50 O1 Q0 OO OO0 FF FF|FF|FF| 01| 00 00 00| .Pa.

O 70072688 OO 00 OO | OO OO QO OO OO O1 OO OO |00 | AD 22 OF 70 p

O 700726CE 28 | 27 O7 |70 6D 27 | O7 | 7O Y8 56 34 | 12|10 26 OF YO V4..8Lp
(70072608 EA D& FC|3D DB 26 O7 |70 18 26 OF 70| EO 26 OV 70| ..=.8.p.Bup.BLp
O 700726E8 EO | FF FF| FF | 4F | 0D OO0 | 00 EC 26 OF 70| EF CD| AB | 89 | ..O0..8.p..
Cee7DO726F8 | 78 56 34 |12 B1 | FF FF | FF FC | 26 O7 | 70 | B1 | FF | FF | FF | xV4..080p..

O 70072708 4F 00 OO | 00 38 26 | O7 7O 40 26 O7 | V0| 91| 23 08 V0| O.8&p@E.pE.p
Ce70072718 54 | 27 O7 |70 B1 | FF FF|FF B1 | FF FF FF | 20 00 | 00 | 00| T.puvens o

O 70072728 | 15|03 |00 | 00 | 73 | 27 |07 | 70 | 4F 00 | OO |00 | 30 | 27 | O7 | 70 | ..s'.pO..0'p W

This window displays a memory with hex format and variable bit width (8/16/32 bits).

To change its value, first select the row and click left button of mouse in the target location.

Versatile address input is available such as 0x1234 (hex), 1234 (hex without Ox prefix) and &variable.

Also comment (//) can be added to the address input such as '0x1234 // register".

In the address combo box, the recent addresses are registered so that you can easily swap between.
210

easyDSP help

Total memory size to be displayed in a window is 1kB (0x400). But regular data update is limited to
only visible area of window.

Note :
1. The start address is 4B aligned for TI C28x MCU.
example) if input address is 0x--0 or 0x--1, then start address is 0x--0.
example) if input address is 0x--2 or 0x--3, then start address is 0x--2.
2. The start address is 8B aligned for Arm core.
example) if input address is 0x--0 to 0x--7, then start address is 0x--0.
example) if input address is 0x--8 to 0x--F, then start address is 0x--8.
3. The first memory address shown in the window could be not the address you input in the adress
combo box.
4. 1kB memory area is displayed from the start address.
5. In case &var format is used as an address input, if it is changed with code modification, the
address of the window is automatically changed after MCU booting.

When easyDSP communicates with multi cores of ARM MCU

You can select which core accesses the memory.
This is useful in case each core has different memory contents.
If the start address is set by '&n:var' format, the core is fixed to CPUn.

MEEIT o
Address [0:10001342 =] bitwidh [-] [osec -]
Address +0 | +1 | +2 | +3 | +4 | +5 | +0 | +7 | +8 | +9 | +A | +B | +C | +D | +E | +F | ASCII ~

O 10001943 00 |00 OD OO0 OO OO OD | OO OO OO OO0 OO 1A 04 | 0D OO
(10001958 43 119 00 |10 | 1C 00 OO | OO OO | OO OO OO | OO OO | OO OO0
O 10001968 24 |0C 00 OO OO OO | OO |OOD O1|00 OO | OO 02 4C| 04 | 00
0w 10001978 01 |4C 04 00 O1 4C | 04 | OO OO | 0O OO | OO OO | OO | OO | OO
0w 10001938 00 |00 OO OO OO | OO | OD | OO OC)| OO OO | OO OD| OO)| OO OO
0w 10001998 06 |02 O1 OO0 00 02 OD 69 OO0 01 O1 | 8B EV 01| 20 OO
O 10001948 00 |0C C3 EF 01 | 20 OA | OQ OO | OO OA | OO 02 00 00D OO
0 100019E3 60 |00 02 00 00 01 02 | O OD | OO OO0 OO OO0 Q0 00 OO0
O 1000719C2 00 |00 OD OO OO OO OD | OO OO OO OO0 OO OO Q0 0D OO0
010001903 00 |00 OD O0 OO OO OD | OO OO OQ0 OO0 OD OO0 Q0 | 0D OO | .o

0x1000T9ES | 0D | 00 | 00 |00 | 00 | 00 00 | 0D 00 00 |00 | 00 | 00 00 | 00 | 00 wewseses v
9.7 Array
vy B
|u16aAmayDim2 | [uint16_t [100][100] [20 sec ~|
ulbamayDim2 | [7I00] | [0 | 71021 | (1631 | (04l | (NS | el | (07 | ree) | el | rIne | i | rIng [e
(01071 0 1 2 3 4 3] 7] 9 10 il 12
107 10 il 12 13 14 15 16 7 18 19 20 21 22
[2107] 20 21 22 23 24 25 26 27 28 29 30 £l 32
[310"] 30 £}l 32 33 34 35 36 37 38 39 40 4 42
(41071 40 41 42 43 44 45 46 47 43 439 50 51 52
[310] 50 51 52 53 54 55 56 57 58 59 60 61 62
[61[7] 60 61 62 63 64 65 66 67 68 69 70 7 72
[7107] 70 7 72 73 74 75 76 77 78 79 80 a1 82
[B1[7] 80 81 82 23 24 85 86 &7 28 89 S0 9 92 v
£ >

In Array window, the values of array variable which is one dimensional or two
dimensional are displayed with grid view.
Note that only visible cells are updated to reduce the communication burden of MCU.

211

easyDSP help

The member of array should be fundamental type. Please use Tree window if the member of array is
structural variable type. You can change its value by mouse left button or enter key.

You can use ‘copy-paste’. Especially with Microsoft Excel program. Please select block by clicking
column or row of this array. You can select all by clicking the name of variable. Note that it could take
addtional communication time since easyDSP first fills the empty cells (if any) before copying.

9.8 Tree

Tree window

Tree-1 E@

|5tructfl_lni|:-n j |Gpic-DataRegs j |5 SRC j
:
- GpioDataRegs GPADAT

GpioDataRegs. GPADAT.all © 4294701056
- GpicDataRegs.GPADAT bit

- GpioDataRegs GPADAT bit. GPICO
- GpioDataRegs GPADAT bit GPIOL :
- GpioDataRegs GPADAT.bit GPIOZ :
- GpioDataRegs GPADAT bit GPIOS -
- GpioDataRegs GPADAT bit. GPIOZ
- GpioDataRegs GPADAT bit. GPIOS :
- GpioDataRegs GPADAT.bit. GPIOG :
- GpicDataReqs. GPADAT.bit. GPIOT :

In tree window, the values of array, structure type variable are displayed with tree view.

Note that only visible cells are updated to reduce the communication burden of MCU.

By clicking left mouse button or enter key input, you can change the value of variable.

By clicking right mouse button, you can change display mode (decimal => hex-decimal => binary = >
decimal....).

10. Trouble Shooting

10.1 Common

Trouble : easyDSP communication fails at first try of easyDSP use

Shooting: there are several reasons for this. Please check below check points.

check point 1 : If ram booting or flash programming is not successful, please check the hardware
setting particularly for connector pin mapping, contact failure of connector and cable. You can check if
the hardware and software setting is proper by running MCU with debugger and monitoring the
variables by easyDSP.

check point 2 : The easyDSP source file and header file should be included in your project.

check point 3 : #define variable should be set properly in the easyDSP header file.

check point 4 : In the main.c, easyDSP related functions should be called.

check point 5 : The baud rate of project setting should be same to that in the easyDSP header file.
check point 6 : In the user program, don't allocate SCI or UART for easyDSP to another GPIO pins.

212

easyDSP help

check point 7 : In the user program, don't allocate GPIO for easyDSP to another function.
check point 8 : easyDSP ISR (Interrupt Service Routine) should have enough time resource to run
properly. Please check below.

Trouble : communication fails due to the lack of time resource to
easyDSP

Shooting: You have to secure the required time resource to easyDSP communication. Please try below
methods.

1. Increases 'wait-more-time' in the project menu

2. Slows down the baud-rate

3. Minimize the number of variables of monitoring (For example, use Command Window only)

4. If possible, increase the priority of easyDSP ISR (SCI or UART)

Trouble : At first, easyDSP works well but soon it fails. Why?

Shooting 1 : easyDSP uses the lowest prioritized ISR (Interrupt Service Routine) of MCU by default. If
higher prioritized interrupt routine starts to take most of time resource, then ISR for easyDSP doesn't
work properly. Please refer to above trouble and shooting.

Shooting 1 : in a power electronics system with high voltage and high current switching operation,
easyDSP communication could failed due to either conducted or radiated noise. Please take a measure
to reduce the noise accordingly.

Trouble : easyDSP is not connected

Cause : mechanical connection is not stable
Shooting : please connect easyDSP directly to PC (not via USB extension port) or use different USB
port or use new USB cable.

easyDsP >

Could not open easyD5P-USE pod. Please connect it and then
! % re-start easyDsP.

Trouble : Error message like below

Shooting : You will face below (or similar) error message with 32bit Windows. Please use 64bit
Windows.

' aasuDSF (%]

!E The operating system denied access to the specified file!

f-{ Ju]|

o i

Trouble : can't access the website (www.easydsp.com)

213

http://www.easydsp.com/

easyDSP help

Cause : due to limited traffic size allowable per day, its access is temporarily blocked.
Shooting : please access the web site tomorrow.

S5H41 A0 E=
oiﬂ"**a':" = DhSHRA S LICE

==

_ [503 Service Unavailable]
- O] oty Ho|X|= 2 oY F&T¥(Traffic)S =S 2 HALH, HEH2 0 AFHE 7|&
o= A& =gt
~ AO|E #2|Xt= SAE 0| 'Ll qH] A 22 O R0l AFg B 2l Egf=] 2|Mlo| ThsEh
LICH

10.2 C28x

Trouble shooting (TI C28x)

Trouble : when SCI-A GPIO port recommended by easyDSP could not
be usable

To use RAM booting and flash programming with easyDSP, easyDSP should be connected to the
designated SCI-A and GPIO port.

In case only monitoring is used with easyDSP, easyDSP can be connected to any SCI and any GPIO
port, but you have to modify the easyDSP source file accordingly.

To use RAM booting and flash programming with easyDSP, but with other GPIO port than designated,
please refer to the help file 'How to use other SCI port than designated'.

It's about how to use designated SCI-A port during RAM booting or flash programming, and then use
other SCI port than designated during monitoring.

Trouble : 'section not aligned' message in flashrom dialog

Status

Checking bin file ... Failed !
The output section starting 0x080002 should be aligned on a 4-word boundary !
Please use '‘ALIGN{4) in linker command file !

Shooting : easyDSP uses TI's flash API to access onchip flashrom. TI flash API of Gen.3 MCU (ex.
F2807x, F28002x, F28004x, F2837x, F2738x) requires section alignment on the address (min. 4 words
boundary or recommended 8 words boundary) depending on MCU. That is, the start address of the
section should be either 0x*0, 0x*4, 0x*8 or Ox*C for C28x core and either 0x*0 or 0x*8 for Arm
Cortex-M4 (ex, F2838x CM). In the picture above, the error is caused since the start address of the
section is 0x*2.To avoid this problem, please align all sections linked to flash on a minimum 64-bit
boundary in the linker command file for your code project. As shown below linker command file from TI,
it is already applied as recommended value for default sections but you need to do it yourself for your
own section.

If the program continues even after above measure, please check your map file (*.map) and identify
which section makes error (the section starting from the address 0x080002 in the picture) and apply
section specific measures.

214

easyDSP help
<in case of TMS320F280049>

SECTIONS
codestart : » BEGIN, PAGE = @, ALIGN(4)
.text : >> FLASH BANK® SEC2 | FLASH BANK® SEC3 | FLASH BANK® SECS, PAGE = 8, ALIGN(4)
.cinit ¢ » FLASH_BANK® SECIL, PAGE = B, ALIGN(4)
.switch ¢ » FLASH_BANK® SECIL, PAGE = B, ALIGN(4)
.reset : » RESET, PAGE = @, TYPE = DSECT /* not used, */
.stack t > RAMMIL, PAGE = 1

#if defined(__TI_EABI_)

.init_array : » FLASH_BANK®_SEC1, PAGE = @, ALTGN(4)

.bss : > RAMLSS, PAGE = 1

.bss:output : > RAMLS3, PAGE = @

.bss:cio : » RAMLS@, PAGE = @

.data t » RAMLSS, PAGE = 1

. SYsmem t » RAMLSS, PAGE = 1

/* Initalized sections go in Flash */

.const : » FLASH_BANK® SEC4, PAGE = @, ALIGN(4)
#else

.pinit : » FLASH BANK@ SECIL, PAGE = @, ALIGN(4)

.ebss : » RAMLSS, PAGE = 1

LESysmem t > RAMLSS, PAGE = 1

.cio : > RAMLSB, PAGE = @

.econst ¢ » FLASH_BANK®_SEC4, PAGE = @, ALIGN(4)
#endif

ramgs@ : » RAMGSB, PAGE = 1

ramgsl i » RAMGSIL, PAGE = 1

<in case of TMS320F28388 CPU1 and CPU2 >

SECTIONS
1
codestart : » BEGIN, ALIGN(S)
text : »» FLASHL | FLASH2 | FLASH3 | FLASH4, ALIGN(S)
.cinit : » FLASH4, ALIGN(3)
.switch : » FLASH1, ALIGN(3)
.reset : » RESET, TYPE = DSECT /* not used, */
.stack : o> RAMML
#if defined(_ TI EABI)
Linit_array : » FLASH1, ALIGN(3)
.bss > RAMLSS
.bss:output » RAMLS3
.bss:cio : > RAMLSS
.data : » RAMLSS
. Sy smem t » RAMLSS
/* Initalized sections go in Flash */
.const » FLASHS, ALIGN(3)
#else
.pinit > FLASH1, ALIGN(8)
.ebss : > RAMLSS
LESYSmem : » RAMLSS
.cio : » RAMLSS
/* Initalized sections go in Flash */
.econst »>> FLASH4 | FLASH5, ALIGN(3)
#endif

215

easyDSP help
<in case of TMS320F28388 CM>

SECTIONS
1
resetise : » CMBANK@ RESETISR, ALIGN(16)
wTftable 1 » CMBANK@ SECTOR®, ALIGN(16) /* Application placed wector table in Flash®/
wtable T » SBRAM /* Application placed wector table in RAM*/
-text : »» CMBANK@ SECTOR® | CMBANK® SECTOR1, ALIGN(16)
.cinit : » CMBANK® SECTOR®, ALIGN(15)
.pinit : 3> CMBANK@ SECTOR@ | CMBANK® SECTOR1, ALIGN(16)
.switch : »» CMBANK@ SECTOR® | CMBANKE® SECTOR1, ALIGN{16)
- Sy smem : > 52RAM
.stack : > CIRAM
.ebss : > CIRAM
.econst : »»> CMBANK@ SECTOR@ | CMBANKE@ SECTOR1, ALIGN(L16)
LBy smem : > CIRAM
.data 1 > S3RAM
.bss 1 > S3RAM
.const : »»> CMBANK@ SECTOR@ | CMBANKE@ SECTOR1, ALIGN(L16)

Trouble : 'The address xxx is not flash area !' error message when
entering to flash dialog

Status

CPUA : Checking the validity of bin file ... failed !
The address 0x001500 is not flash areal

Cause : Flash programming is not feasible since the initialized section is located at RAM. Particularly in
the case that initial value of user variable in CLA program is set.

Shooting : Please refer to below manual capture. In case the initial value is needed, write the variable
with the value in the main() or other C28x code.

10.2.3 C Language Restrictions
There are several additional restrictions to the C language for CLA.
+ Defining and initializing global/static data is not supported.

Since the CLA code is executed in an interrupt driven environment, there is no C system boot sequence. As a
result, global/static data initialization must be done during program execution, either by the C28x driver code
or within a CLA function.

Variables defined as const can be initialized globally. The compiler creates initialized data sections
named .const_cla to hold these variables.

+ CLA code cannot call C28x functions. The linker provides a diagnostic message if code compiled for C28
calls code compiled for CLA or if code compiled for CLA calls code compiled for C28.

* Recursive function calls are not supported.

+ The use of function pointers is not supported.

Trouble : Booting is successful but verifying is not from the address
0 due to MCU reading failure

216

easyDSP help

RAM booting for TMS320F28x
Boot
Verify

Status : Verifying RAM booting .. Failed !
Failed to read MCU at address 0x000000

d v Enables fast verifying

‘ ‘ Werify ‘ Exit ‘

Verifying is done by the easyDSP communication with MCU. So, any reason to block the communication
could cause this problem.

cause-1 : The source files easyDSP provides for its communication is not included in the project
Shooting-1 : please include them in the project and modify main.c file accordingly. Please refer to the
help file.

cause-2 : user program sets the GPIO easyDSP is using improperly.
Shooting-2 : please remove the GPIO seeting from your program.

cause-3 : enough time resource is not allocated to easyDSP communication
Shooting-3 : For example, if ePWM interrupt has high frequency, please reduce it.

Trouble : compile error of easyDSP source file /w controlSUITE

cause : controlSUITE has the different register naming from C2000Ware
Shooting : please use the latest TI source file (C2000Ware)

Trouble : MCU is working improperly when using a large number of
variables or big size array

cause : bug of TI source file
Shooting : please use the latest TI source file (C2000Ware)

Trouble : F2838x is not working with easyDSP

Shooting : In case your board has 20Mhz clock and your source file is based on
C2000Ware_3_02_00_00 (or upward), please predefine USE_20MHZ_XTAL so that TI source files can
be compiled based on 20MHz. Please check below excerpt from TI's C2000Ware_3_02_00_00 release
note.

» F2838x dnverlib and examples updated to use 23MHz XTAL clock as default input clock

Note: By default. Device init function in driverlib and InitSysctr]l function in bitfield
examples assumes that the XTAL frequency is 25MHz. If a 200MHz XTAL is used,
please add a predefined symbol "USE 20MHZ XTAL" in your CCS project. If a
different XTAL is used, vou need to update the PLL multipliers and dividers accordingly.
Mote that the latest F2838x controlCARDs (Rev.B and later) have been updated to use
253MHz XTAL by default. If vou have an older 20MHz XTAL controlCARD (E1, E2, or
Rev A), refer to the controlCARD documentation on steps to reconfigure the
controlCARD from 20MHz to 25MHz.

217

easyDSP help

Trouble: Warning message as below before RAM booting is started

easyD5sP X

Warning : The MO memory block (address CuD00002 - CxeD00122)

! . arereserved for the boot-load process, Your code is
bootloaded into this region and there is no error checking to
prevent it from corrupting the boot ROM stack !

Shooting : change your cmd file so that your code is not overlapped with the reserved RAM memory

for bootrom.

For example, 28377D has the reserved RAM memory for bootrom operation as shown in the table below

(Excerpt from Technical Reference Manual (Literature Number: SPRUHMSI, Revised September 2019)).
Table 4-19. Reserved RAM and Flash Memory Map for CPU1

Memory Description Start Address End Address Length
RAM Boot ROM 0x0000 0002 0x0000 0122 0x0121
TI-RTOS™ 0x0000 0780 0x0000 O7FF 0x0080

Flash TI-RTOS M@ 0x0008 2000 0x0008 2823 0x0824

(" If the user is not planning on using TI-RTOS in ROM, then these memaory locations are free to be used by the application.
@ For using the TI-RTOS in flash sector A, Tl recommends that this sector be made unsecure, or at minimum, the sector should be
verified that there is no secure zone claiming this sector.

In case your code is overlapped with this area, easyDSP detects it and shows warning message.

Trouble: RAM booting failed with message box below

Shooting : RAM booting is failed since program memory is allocated to flash area, not ram area. The
address shown in the box (ex, 0x33DOFE) belongs to flash. Please change your link file to allocate all

the memory to ram area and try again.
51 boating for TMEI20F28€ R T

Bont 1
Vearify

Status = Your file is not suitable for SCI baoting!
Address 0x33DOFE is not valid for serial booting!

Boot iy Al | ‘ Ext

Trouble: Auto bauding failed

Shooting :
Mainly due to wrong hardware connection between easyDSP and your MCU board.
Step 1 : please check if your connection is correct. Hope you find misconnection in this step. Or, move
to step 2.
Step 2 : please check the waveforms of easyDSP pins during booting. Also refer to the below sequence
of easyDSP pin status.
In case /RESET of easyDSP is NOT directly connected to reset pin of DSP, please check reset
pin status of DSP pin together.
Step 2-1 : please check if /BOOT is low when /RESET is changed from low to high.
In case power monitoring IC (TPSxxxx) is used to generate /XRS sighal and /RESET is an
input to the IC,
some cases it happens that /XRS becomes high after /BOOT is high, which will make
booting failure.
Step 2-2 : please check RX and TX. After /BOOT pins are released high, 0x41 is sent from PC
to MCU via RX.
Bauding bps could be different by MCU type and booting speed option.
Then MCU send 0x41 at the detected bps (ex. 38400bps here). Please check the
waveforms and see what is missing in your board.

218

easyDSP help

before easyDSP v8.7 : T1 = -10ms, T2 = 50ms
easyDSP v8.7 to v9.4: T1 = -10ms, T2 = 1s
from easyDSP v9.5 : T1 = 250ms, T2 = 1s

/RESET |:—590—”15 — :|~ ———————— - T 0x41=0b 0100 0001 T
T2 ! 7 R > S
1 - A

}”’* | }
T1 ! J | | AN
BOOT < > ;o THRX 1 o i Y
/ : 50ms H Zooming Lse 0 0 0 0 0|1 MsB } |
[K i
A

o s
s “ \ T S //
RX { I I | N A @38400bps T .
i AN R 0 7
T P
2 ! I I) T e

Trouble : compilation failed with below error message

undefined first referenced
symbol in file

LL$$OR C:\\tidcs\\c28\\DSP2833x\\Project\\Debug\\easy2833x_sci_v7.3.0bj
ULL$$CMP C:\\tidcs\\c28\\DSP2833x\\Project\\Debug\\easy2833x_sci_v7.3.0bj

error: unresolved symbols remain
error: errors encountered during linking; "./Debug/inverter.out" not built

>> Compilation failure

Shooting : The TMS320C28x does not directly support some C/C++ integer operations. Evaluating
these operations is done with calls to run-time-support routines. These routines are hard-coded in
assembly language. They are members of the object and source run-time-support libraries.

"ULL$$CMP" = unsigned long long comparison
"LL$$OR" = long long oring

Therefore, please include run-time library at compiling.

Trouble : Type of all variables are displayed as 'int'

Shooting: Please use the latest easyDSP version and set the proper debugging model (either coff or
dwarf) in the project setting.

10.3 STM32
Trouble shooting (ST STM32)

Trouble: below error message from FlashROM or RAM booting dialog

Shooting : place your code to flash area for flash dialog operation. And place your code to RAM area for
RAM booting dialog operation.

219

easyDSP help

STM32 flash programmer e
Operation Page Selection to be Erased
Select | Index | Start Address Size
O 0 008000000 16K
O 1 008004000 16K
O 2 008008000 16K
O 3 0:<0800C000 16K
O 4 008010000 BAK
Erase O 5 008020000 128K
O B 008040000 128K
O 7 008060000 128K
O 8 008080000 128K
O 9 008040000 128K
O 10 0x080C0000 128K
O 11 0:080E0000 128K
O 12 008100000 128K
O 13 0208120000 128K
O 14 008140000 128K
O 15 0208160000 128K
Reset > Exit Exit All | Mone | | |

Checking memaory region ... Failed !
The address range (020003000 - 0x200030FF) doesnt belong to flash memory

5Th32 RAM booting X

Operation

Bt

Checking memory region .. Failed !
The address 0:x08000000-0:x080000FF overlaps with the flash area !

Trouble: Failed to enter bootloader mode

Shooting :
Mainly due to wrong hardware connection between easyDSP and your MCU board.
Step 1 : please check if your connection is correct. Hope you find misconnection in this step. Or, move
to step 2.
Step 2 : please check the waveforms of easyDSP pins during booting. Also refer to the below sequence
of easyDSP pin status.
In case /RESET of easyDSP is NOT directly connected to reset pin of MCU, please check reset
pin status of DSP pin directly.
Step 2-1 : please check if BOOT pin is high when /RESET pin is changed from low to high.
In case power monitoring IC (TPSxxxx) is used to generate NRST signal and /RESET is an
input to the IC,
it could happen that NRST becomes high after BOOT is low, which will make booting
failure.
Step 2-2 : please check RX and TX. After BOOT pin is low, 0x7F (even parity) is sent from PC

220

easyDSP help

to MCU via RX.

Bauding bps could be either 115200bps or 57600bps or other value depending of MCU
type.

Then MCU send 0x79 (even parity) to PC at the detected bps. With this handshake, bps of
each side (easyDSP and MCU) are aligned.

In case you can't observe 0x79 at all, please modify the option byte accordingly.

T
/RESET === oo > 0x7F=0b 0111 1111

s I | e >

250ms r“-"‘ ! | | |

" | I I

I RX 1 o t T

ot | - roomng | Jos T 1 0 0 1 | |

50ms 1< -m IS <« > P S

L] . T 8.7usec AT

RX : I I 7 Ox7F A @115200bps R O

Auto bauding E $ lT P
process v

By \ III .3 0x79 0x79=0b 0111 1001

X 1 | [I
Zooming LSB 0 0 1 1 1 1 MSB

11. Tips
11.1 DA converter

If your MCU board has DA converter, you can monitor the variables on the oscilloscope by outputing
them via DA converter. It is very helpful in debugging your program. In this tip, it is explained how you
can change the content of DA converter (that is, variable to display) easily in real time.

Step 1 : Modify da.h file

easyDSP supports c source file and its header file (da.c and da.h) for dac control. File da.h is like below.

// File name : da.c
// function : DA output control

// variable explanation(#=1,2,3,4)

// da# : address of variable

// da#_type = 0 ; the variable is float
// = 1 ; the variable is integer

// da#_mid : mid value

// da#_rng : da scale

// use this routine in EasyDSP as below
// dal=&var_float

// dal_type=0

// dal_mid=0.

// dal_rng=20

// da2 = &var_int

// da2_type =1

// da2_mid= 0.

// da2_rng = 20

221

easyDSP help

#ifndef _DA_EasyDSP
#define _DA_EasyDSP

// you should specify the da address of your own
#define DA1_ADDR (*(int *)0X03C000e)
#define DA2_ADDR (*(int *)0X03C000d)
#define DA3_ADDR (*(int *)0X03C000b)
#define DA4_ADDR (*(int *)0X03C0007)
#define

extern unsigned int dal, da2, da3, da4, dal_type, da2_type, da3_type, dad_type;
extern float dal_rng, dal_val, dal_mid;
extern float da2_rng, da2_val, da2_mid;
extern float da3_rng, da3_val, da3_mid;
extern float da4_rng, da4_val, da4_mid;

// Notice : If you need faster DA output, please replace 'divide' part
// in the macro with 'multiply' accordingly.

// 12 bit DA

#define DA12(num) \

da##num##_val = (da##num##_type == 0 ? *(float *)da##num : (float)(*(int *)da##num)) ; \
DA##num##_ADDR = (int)((da##num##_val-da##num##_mid)* Ox7ff/da##num##_rng) +
0x800 ;

// 8 bit DA

#define DA8(num) \

da##num##_val = (da##num##_type == 0 ? *(float *)da##num : (float)(*(int *)da##num)) ; \
DA##num##_ADDR = (int)((da##num##_val-da##num##_mid)*0x7f/da##num#+#_rng) + 0x80 ;

#endif

At first, the address of da converter on your board should be defined correctly in the DA#_ADDR define
lines(#=1,2,3,4). And then, you should also modify the macro function for dac output considering the
feature of your dac's own. In above example code, 8 bit and 12bit dac with positive/negative output
dac are shown.

Note : divide operation in the macro may need long time to be executed. For faster da output, replace
it by the multiply operation.

Necessary variables are defined in the da.c file and their meanings are
da# = The address of variable which is output to DA channel #
da#_type = The type of variable. 1 = Integer, 0 = float

da#_rng = range of display

da#_mid = mid value of display

Step 2 : Modify your program

Make your MCU program contain the da.c and da.h you modified. And insert following macros where
you want dac output is made .Normally, the insertion place is in the timer interrupt routine for
repetitive output.

#include "da.h"

222

easyDSP help

DA12(1);
DA12(2);
DA12(3);
DA12(4);

Step 3 : Use easyDSP

Finally, you can control the da converter in the command window or other windows as follows.

dal=&var_float
dal_type=0
dal_mid=0
dal_rng=20

da2 = &var_int
da2_type =1
da2_mid=0
da2_rng = 20

11.2 Others

only for MCU flash programming with easyDSP "=

In case you like MCU flash programming only without using various easyDSP communication features,
then please make a easyDSP project with the target output file (for example, *.out file), and go to
flashROM menu and program flash.

Insert new line in command window

Basically, enter-key input in command window means the running of current line command. To insert
new line without running command, two methods are supported. One is just clicking the tool bar of

new line —* . The other is 'Ctrl + Enter’ key input.

Confirm your assignment command in command window

You can change variable value by assignment commands(=). And then confirm change by clicking the

right button of mouse. This action is equal to the tool bar of 'update

Save some information on the flashrom

Because easyDSP supports sector erase of flashrom, you can use some sectors of flashrom for booting
data and the other sectors for saving your system information.

11.3 FAQ

What's difference between easyDSP and Jtag/SWD debugger ?

223

easyDSP help

They have different purpose. Debugger is useful when you develop hardware and software in the
beginning especially with breakpoint, step-in operation. But in some applications like motor drives, you
can't use this features when the system is running. So during system operation, you need to monitor
the variables in your code for system debugging. The variable monitoring with debugger has some
limits such as limited number of variables, monitoring speed. Even worse is under very noisy
environment (high current, high voltage switching) the debugger is sometimes disconnected. And for
mass production, the debugger accessibility is limited to protect IP.

On the other hand, easyDSP has very stable connection all the time since it communicates with MCU
with communication channel like SCI or UART.

When to use easyDSP, when to use debugger ?

Debugger is useful when you develop MCU board or its basic firmware. On the other hands, easyDSP is
useful when you develop/debugg a high-level system algorithm. By combining debugger and easyDSP,
the best debugging environment could be implemented.

How reliable is reading variable?
100% reliability is not guaranteed. easyDSP could read wrong value of variable.
How reliable is writing variable?

2 byte checksum is checked before writing to variable. So the probability of having incorrect writing is
extremely remote. But not 100% guaranteed.

How reliable is writing flash rom?

Flashrom is written by clicking 'Program' button. But nothing is checked and verified during writing
process. Therefore you should check it by yourself by clicking 'Verify' button afterwards.

Which value will be displayed if the reading operation fails ?

either '?' (ex, in watch window) or no display in plot and chart window.

Does easyDSP do compiling and linking C program?

No. They are done by compiler and linker provided by chip maker.

How many variables can I monitor using easyDSP?

As much as the resource of your PC, speed and memory are permitted.

12. Driver

12.1 Driver Installation

NOTE) 64bit Windows is mandatory !!

easyDSP uses FT2232 chip from FTDI as an USB controller IC. Therefore driver of easyDSP is same to
D2XX Direct Driver of FT2232.

You can get all drivers in http://www.ftdichip.com/Drivers/D2XX.htm, all installation guidance in
http://www.ftdichip.com/Documents/InstallGuides.htm.

Windows OS How to install driver

224

http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Documents/InstallGuides.htm

easyDSP help

Just run the "CDM212364_Setup.exe" in "Driver" folder of easyDSP program
BEFORE connecting easyDSP pod into your PC. To install the latest driver file

W!ndows 11 always, please visit http://www.ftdichip.com/Drivers/D2XX.htm .
Windows 10

Windows 8.1 Please refer to the below links for detailed installation process.
Windows 8 Windows 10/11 Installation Guide

Windows 7 Windows 8 Installation Guide

Windows 7 Installation Guide

Not included in the installation files but you can download it

Drivers : http://www.ftdichip.com/Drivers/CDM/CDM20824 Setup.exe
Installation process :

Windows Vista Installation Guide

Windows XP Installation Guide

Windows Vista
Windows XP

Since easyDSP uses FT2232 USB controller chip from FTDI, you can refer to the latest driver file (D2XX
direct driver) and its installation guideline from FTDI.

http://www.ftdichip.com/Drivers/D2XX.htm

http://www.ftdichip.com/Documents/InstallGuides.htm

After the driver is well installed, you will find USB Serial Converter A/B in the device manager once the
easyDSP pod is connected to PC.

File Action View Help
o« @ E HE

v ' Universal Serial Bus controllers

§ Generic SuperSpeed USB Hub

Generic USB Hub

Generic USB Hub

Intel(R) USB 3.10 eXtensible Host Controller - 1.20 (Microsoft)
Intel(R) USB 3.10 eXtensible Host Controller - 1.20 (Microsoft)
Unknown USB Device (Link in Compliance Mode)

USB Composite Device

B~ - S

USB Composite Device
USB Composite Device
USB Composite Device

USB Root Hub (USB 3.0)
USB Root Hub (USB 3.0)
USB Serial Converter A
USB Serial Converter B
’ USB Connector Managers

y
?
y
y
§ USB Composite Device
y
y
y
¢

12.2 Driver Uninstallation

In case general Windows way of driver removal is not successful, CDM Uninstaller can be used. CDM
Uninstaller is a free application that can selectively remove Windows device drivers from the user’s
system as specified by the device Vendor ID and Product ID. This application comes as a command
driven application or as a GUI executable.

The readme for the GUI version can be viewed here. Please refer to the readme for running the

225

http://www.ftdichip.com/Drivers/D2XX.htm
https://ftdichip.com/wp-content/uploads/2022/05/AN_396-FTDI-Drivers-Installation-Guide-for-Windows-10_11.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_234_FTDI_Drivers_Installation_Guide_for_Windows_8.pdf
http://www.ftdichip.com/Documents/AppNotes/AN_119_FTDI_Drivers_Installation_Guide_for_Windows7.pdf
http://www.ftdichip.com/Drivers/CDM/CDM20824_Setup.exe
http://www.ftdichip.com/Documents/AppNotes/AN_103_FTDI_Drivers_Installation_Guide_for_VISTA(FT_000080).pdf
http://www.ftdichip.com/Documents/AppNotes/AN_104_FTDI_Drivers_Installation_Guide_for_WindowsXP(FT_000093).pdf
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Documents/InstallGuides.htm
https://www.ftdichip.com/Support/Utilities/CDM_Uninst_GUI_Readme.html

easyDSP help

application.
Both applications come as a zipped executable that needs to be extracted prior to running.

Download CDM Uninstaller (command line version + GUI version)

Major process is to add Vendor/Product ID and click 'Remove Devices'.

COM Uninstaller ot

Yendor D Product D

Y1D_0403 PID_B007

Bemove

Clear

[] Generate uninztall log file
Feady

:Hemave Devices Cancel

226

https://www.ftdichip.com/Support/Utilities/CDMUninstaller_v1.4.zip

	1. easyDSP ?
	2. Products type
	3. starting easyDSP
	4. Revision History
	5. Limitation
	6. Pod configuration
	7. How to use MCU
	7.1 C28x
	7.1.1 C28x programming
	7.1.1.1 common
	7.1.1.2 multi cores
	7.1.1.3 using BitField
	7.1.1.4 using DriverLib
	7.1.1.5 F2837xD and F28P65xD usage
	7.1.1.6 F2838x usage

	7.1.2 C28x board setting
	7.1.2.1 F28P65x
	7.1.2.2 F2838x
	7.1.2.3 F2837xS/2807x
	7.1.2.4 F2837xD
	7.1.2.5 F28P55x/F28001x/28002x/28003x/28004x
	7.1.2.6 F2823x/2833x
	7.1.2.7 C2834x
	7.1.2.8 F2802x/2802x0/2803x/2805x/2806x
	7.1.2.9 F281x
	7.1.2.10 F280x

	7.1.3 How to use other SCI port than designated
	7.1.4 C28x cautions

	7.2 STM32
	7.2.1 STM32 programming
	7.2.2 STM32 hardware
	7.2.3 STM32 dual core
	7.2.4 STM32 RAM booting
	7.2.5 STM32 cautions

	7.3 S32
	7.3.1 S32K1 + SDK
	7.3.2 S32K/S32M + RTD

	7.4 AM263x
	7.4.1 AM263x software
	7.4.2 AM263x hardware

	7.5 TM4C
	7.6 MSPM0
	7.7 PSoC4
	7.7.1 PSoC4 software
	7.7.2 PSoC4 hardware

	7.8 XMC1
	7.9 XMC4
	7.10 RA
	7.10.1 RA hardware
	7.10.2 RA sofrware
	7.10.3 RA0

	7.11 RX
	7.11.1 RX hardware
	7.11.2 RX sofrware

	7.12 TX
	7.13 TXZ3
	7.14 LPC
	7.15 Cautions

	8. Menus
	8.1 Project
	8.2 Edit
	8.3 MCU
	8.3.1 Common
	8.3.2 C28x
	8.3.3 STM32
	8.3.4 S32
	8.3.5 AM263x
	8.3.6 TM4C
	8.3.7 MSPM0
	8.3.8 PSoC4
	8.3.9 XMC1
	8.3.10 XMC4
	8.3.11 RA
	8.3.12 RX
	8.3.13 TX, TXZ3
	8.3.14 LPC

	8.4 Tools
	8.5 Window
	8.6 Help

	9. Windows
	9.1 Command
	9.2 Watch
	9.3 Plot
	9.4 Chart
	9.5 Record
	9.6 Memory
	9.7 Array
	9.8 Tree

	10. Trouble Shooting
	10.1 Common
	10.2 C28x
	10.3 STM32

	11. Tips
	11.1 DA converter
	11.2 Others
	11.3 FAQ

	12. Driver
	12.1 Driver Installation
	12.2 Driver Uninstallation

