

easyDSP help

easyDSP help

 1

Table of Contents
1. easyDSP ? ... 4

2. Products type .. 5

3. starting easyDSP .. 8

4. Revision History ... 9

5. Limitation ... 16

6. Pod configuration .. 18

7. How to use MCU .. 21

7.1 C28x .. 21

7.1.1 C28x programming ... 21

7.1.2 C28x board setting ... 38

7.1.3 How to use other SCI port than designated 49

7.1.4 C28x cautions .. 51

7.2 STM32 .. 51

7.2.1 STM32 programming .. 51

7.2.2 STM32 hardware .. 59

7.2.3 STM32 dual core .. 62

7.2.4 STM32 RAM booting .. 68

7.2.5 STM32 cautions ... 71

7.3 S32 .. 72

7.3.1 S32K1 + SDK .. 72

7.3.2 S32K/S32M + RTD ... 79

7.4 AM263x .. 95

7.4.1 AM263x software ... 95

7.4.2 AM263x hardware .. 105

7.5 TM4C ... 108

7.6 MSPM0 ... 112

7.7 PSoC4 .. 119

7.7.1 PSoC4 software .. 119

7.7.2 PSoC4 hardware .. 130

7.8 XMC1 ... 130

easyDSP help

 2

7.9 XMC4 ... 132

7.10 RA.. 135

7.10.1 RA hardware .. 135

7.10.2 RA sofrware ... 136

7.10.3 RA0 .. 143

7.11 RX.. 146

7.11.1 RX hardware .. 146

7.11.2 RX sofrware ... 147

7.12 TX .. 156

7.13 TXZ3 .. 160

7.14 LPC .. 162

7.15 Cautions ... 164

8. Menus ... 165

8.1 Project .. 165

8.2 Edit .. 169

8.3 MCU ... 169

8.3.1 Common ... 169

8.3.2 C28x .. 171

8.3.3 STM32 .. 177

8.3.4 S32 .. 179

8.3.5 AM263x .. 182

8.3.6 TM4C ... 184

8.3.7 MSPM0 ... 185

8.3.8 PSoC4 .. 187

8.3.9 XMC1 ... 188

8.3.10 XMC4 ... 189

8.3.11 RA ... 190

8.3.12 RX ... 192

8.3.13 TX, TXZ3 ... 194

8.3.14 LPC .. 196

8.4 Tools .. 197

8.5 Window .. 198

easyDSP help

 3

8.6 Help ... 198

9. Windows .. 199

9.1 Command ... 199

9.2 Watch .. 201

9.3 Plot .. 203

9.4 Chart .. 207

9.5 Record .. 208

9.6 Memory .. 210

9.7 Array .. 211

9.8 Tree ... 212

10. Trouble Shooting ... 212

10.1 Common ... 212

10.2 C28x .. 214

10.3 STM32 .. 219

11. Tips ... 221

11.1 DA converter ... 221

11.2 Others .. 223

11.3 FAQ .. 223

12. Driver .. 224

12.1 Driver Installation ... 224

12.2 Driver Uninstallation.. 225

easyDSP help

 4

1. easyDSP ?

Welcome to easyDSP for real-time MCU debugging

'easyDSP' is a powerful graphical user interface (GUI) for the maintaining, configuring and trouble-

shooting of embedded software with strict real-time requirements. The tool automatically extracts the

symbol information from the files generated by the cross-compiler and presents the user with windows

for the viewing, editing, logging and graphing of those symbols, in real-time, while the target software

is executing. easyDSP communicates with the target MCU over a serial communication link, typically

SCI (or USART). On the target, only a small "remote agent" needs to be called periodically in the

background task. Since the remote agent runs on spare processor cycles, it does not interfere with the

interrupt driven part of the software. This makes the tool ideal for interfacing with power electronics

control software, where the control tasks need to be executed uninterruptedly and with minimal

latency. The fact that easyDSP does not depend on JTAG/SWD for communicating with the target

makes the tool operate reliably in environments with strong EMI and/or high-voltage isolation

requirements. easyDSP can supports multiple operation so that you can control several MCU boards by

using several easyDSPs in single PC.

easyDSP is designed for the real-time communication between MCU and an IBM PC or compatible

running 64bits Windows .

Supporting MCU :

- TI : C28x, TM4C, MSPM0 and AM263x series

- ST : STM32 series

- Infineon : PSoC4, XCM1 and XMC4 seriels

- Renesas : RA, RX series

- Toshiba : TX and TXZ3 series

- NXP : LPC1x00, S32K, S32M series

The detailed information is available here . For the support of other MCU, please contact

easydsp@gmail.com.

Customers are

 universities in Korea (Seoul National, HanYang, SungKyunKwan, Kangwon, Busan, KAIST, …),

 companies in Korea (Samsung, LG, Hyundai, LS, Onsemi, Infineon, …),

 company outside Korea (Yaskawa, Raytheon Technologies, Collins Aerospace, Carrier, General

Motors , Delphi, Grid-bridge, R&D Dynamics, ADI American Distributors Ltd ...)

 university outside Korea (FEEC@ECE, Virginia Tech)

easyDSP%20product%20portfolio_eng.htm

easyDSP help

 5

easyDSP is not freeware. But it is provided "AS IS" without warranty of any kind, either expressed or

implied, including but not limited to the implied warranties of merchantability and fitness for a

particular purpose. In no event shall easyDSP be liable for any damages whatsoever including direct,

indirect, incidental, consequential, loss of business profits or special damages, even if easyDSP has

been advised of the possibility of such damages. It is the user’s responsibility to check for future

updates to the easyDSP and to use the latest version.

For more information, visit www.easydsp.com or

mail to easydsp@gmail.com for program bug, improvement idea, and other technical inquiry,

hr.oh@egreenpower.com for purchsing, AS, easyDSP Pod hardware inquiry.

Thank you.

Acknowledgment :

This software is based in part on the work of the Independent JPEG Group.

This software is based in part on the work of the FreeType Team.

This software is based on pugixml library (http://pugixml.org). pugixml is Copyright (C) 2006-2018

Arseny Kapoulkine.

2. Products type

type 1 type 2 type 3

In below, you need to purchase easyDSP type by type.

Type
Supporting

MCU

MCU

Communication

Channel

Comments

type

1
TI C28x SCI

Standard isolation type.

Digital isolator is used inside easyDSP pod for isolation purpose.

type

2
TI C28x SCI

Optic cable isolation type.

Stable long-distance communication with optic cable

(HFBF1414Z/HFBF2412Z).

Cable distance : variable(upto 200m) upon request.

type

3

ST STM32

TI AM263x

TI TM4C

TI MSPM0

Infineon

PSoC4

Infienon XMC1

Infineon XMC4

USART or

UART or

SCI

 Standard isolation type.

 Digital isolator is used inside easyDSP pod for isolation purpose.

http://www.easydsp.com/index_eng.html
mailto:easydsp@gmail.com
mailto:hr.oh@egreenpower.com
http://pugixml.org/

easyDSP help

 6

Renesas RA

Renesas RX

Toshiba TX

Toshiba TXZ3

NXP LPC1x00

NXP S32

Please check the part number of MCU below.

notation : [a,b] = a or b, x = any

 MCU part number

TI

C28x

TMS320F280[1,2,6,8,9], TMS320F2801[5,6], TMS320F28044, TMS320F281[0,1,2],

TMS320F2802[20,30,60,70], TMS320F2802[0,1,2,3,6,7,00],

TMS320F2803[0,1,2,3,4,5],TMS320F2805[0,1,2,3,4,5],TMS320F2806[2,3,4,5,6,7,8,9],TMS32

0F2807[4,5,6],

TMS320F28001[32,33,35,37], TMS320F28001[52,53,54,55,56,57],

TMS320F28002[1,2,3,4,5],TMS320F28003[3,4,6,7,8,9],TMS320F28004[0,1,5,8,9],TMS320F2

823[2,4,5],TMS320F2833[2,3,4,5],TMS320C2834[1,2,3,4,5,6],TMS320F2837[4,5,6,7,8,9]S,T

MS320F2837[4,5,6,7,8,9]D,TMS320F2838[4,6,8]S, TMS320F2838[4,6,8]D,

TMS320F28P55xS[D,G,J], TMS320F28P65x[S,D][H,K]

TI AM263x AM263[1,2,4]

TI TM4C

TM4C123[0,1,2,3][C3,D5,E6,H6], TM4C123[6,7][D5,E6,H6], TM4C123[A,B,F,G][E6,H6],

TM4C129[0,2]NC, TM4C1294[K,N]C, TM4C1297NC, TM4C1299[K,N]C, TM4C129[C,D]NC,

TM4C129E[K,N]C, TM4C129LNC, TM4C129X[K,N]C

TI MSPM0 MSPM0Lxxx[3,4,5,6,7], MSPM0Gxxx[5,6,7]

ST

STM32

STM32C011x[4,6], STM32C031x[4,6], STM32C051x[6,8] , STM32C071x[8,B],

STM32C091x[B,C] , STM32C092x[B,C] ,

STM32F030x[4,6,8,C], STM32F031x[4,6], STM32F031x6, STM32F038x6,

STM32F042x[4,6], STM32F048x6, STM32F051x[4,6,8], STM32F058x8, STM32F070x[6,B],

STM32F071x[8,B], STM32F072x[8,B], STM32F078xB, STM32F091x[B,C], STM32F098xC,

STM32F100x[4,6,8,B,C,D,E], STM32F101x[4,6,8,B,C,D,E,F,G],

STM32F102x[4,6,8,B], STM32F103x[4,6,8,B,C,D,E,F,G], STM32F105x[8,B,C],

STM32F107x[B,C], STM32F205x[B,C,E,F,G], STM32F207x[C,E,F,G], STM32F215x[E,G],

STM32F217x[E,G],

STM32F301x[6,8], STM32F302x[6,8,B,C,D,E], STM32F303x[6,8,B,C,D,E], STM32F318x8,

STM32F328x8, STM32F334x[4,6,8], STM32F358xC, STM32F373x[8,B,C], STM32F378xC,

STM32F398xE,

STM32F401x[B,C,D,E], STM32F405x[E,G], STM32F407x[E,G],

STM32F410x[8,B], STM32F411x[C,E], STM32F412x[E,G], STM32F413x[G,H], STM32F415xG,

STM32F417x[E,G], STM32F423xH, STM32F427x[G,I], STM32F429x[E,G,I], STM32F437x[G,I],

STM32F439x[G,I], STM32F446x[C,E], STM32F469x[E,G,I], STM32F479x[G,I],

STM32F722x[C,E], STM32F723x[C,E], STM32F730x8, STM32F732xE, STM32F733xE,

STM32F745x[E,G], STM32F746x[E,G], STM32F750x8, STM32F756xG, STM32F765x[G,I],

STM32F767x[G,I], STM32F769x[G,I], STM32F77[7,8,9]xI,

STM32G030x[6,8], STM32G031x[4,6,8], STM32G041x[6,8], STM32G050x[6,8],

STM32G051x[6,8], STM32G061x[6,8], STM32G070xB, STM32G071x[8,B], STM32G081xB,

STM32G0B0xE, STM32G0B1x[B,C,E], STM32G0C1x[C,E], STM32G431x[6,8,B],

STM32G441xB, STM32G473x[B,C,E], STM32G474x[B,C,E], STM32G483xE, STM32G484xE,

STM32G491x[C,E], STM32G4A1xE,

STM32H503xB, STM32H523x[C,E], STM32H533xE,

STM32H562xG, STM32H562xI, STM32H563xG, STM32H563xI, STM32H573xI,

easyDSP help

 7

STM32H723x[E,G], STM32H725x[E,G], STM32H730xB, STM32H733xG, STM32H735xG,

STM32H742x[G,I], STM32H743x[G,I], STM32H745x[G,I], STM32H747x[G,I], STM32H750xB,

STM32H753xI, STM32H755xI, STM32H757xI, STM32H7A3x[G,I], STM32H7B0xB,

STM32H7B3xI,

STM32L010x[4,6,8,B], STM32L011x[3,4], STM32L021x4, STM32L031x[4,6],

STM32L041x6, STM32L051x[6,8], STM32L052x[6,8], STM32L053x[6,8], STM32L06[2,3]x8,

STM32L07[1,2,3]x[8,B,Z], STM32L08[1,2]x[B,Z], STM32L083x[8,B,Z],

STM32L100x[6,8,B,C], STM32L151x[6,8,B,C,E], STM32L152x[6,8,B,C,D,E],

STM32L162x[C,D,E], STM32L100x[8,B]-A, STM32L151x[6,8,B,C]-A, STM32L152x[6,8,B,C]-A,

STM32L162xC-A, STM32L15[1,2]xD-X, STM32L162xD-X,

STM32L412x[8,B], STM32L422xB, STM32L431x[B,C], STM32L432x[B,C], STM32L433x[B,C],

STM32L442xC, STM32L443xC, STM32L451x[C,E], STM32L452x[C,E], STM32L462xE,

STM32L471x[E,G], STM32L475x[C,E,G],

STM32L476x[C,E,G], STM32L486xG, STM32L496AE, STM32L496x[E,G],

STM32L4A6xG, STM32L4P5x[E,G], STM32L4Q5xG, STM32L4R5x[G,I], STM32L4R7xI,

STM32L4R9x[G,I], STM32L4S[5,7,9]xI,

STM32L552x[C,E], STM32L562xE,

STM32U031x[4,6,8], STM32U073x[8,C], STM32U083xC,

STM32U375x[E,G] , STM32U385xG ,

STM32U535x[B,C,E], STM32U545xE, STM32U575x[G,I], STM32U585xI,

STM32U575x[G,I], STM32U585xI, STM32U595x[I,J], STM32U599x[I,J], STM32U5A5x[I,J],

STM32U5A9xJ, STM32U5F[7,9]xJ, STM32U5G[7,9]xJ,

STM32WB[10,15]xC, STM32WB30xE, STM32WB35x[C,E], STM32WB50xG,

STM32WB55x[C,E,G,Y], STM32WB05xZ, STM32WB06xC, STM32WB07xC, STM32WB09xE,

STM32WBA50xG , STM32WBA52x[E,G], STM32WBA5[4,5]x[E,G] ,

STM32WL33x[8,B,C], STM32WL5[4,5]xC, STM32WLE[4,5]x[8,B,C]

Infineon

PSoC4

CY8C402[4,5], CY8C404[5,6], CY8C412[4,5],CY8C4126xxx-S42x, CY8C4126xxx-S43x,

CY8C4126xxx-S44x, CY8C4126xxx-S45x, CY8C4126xxx-Mxxx, CY8C4127xxx-Sxxx,

CY8C4127xxx-Mxxx, CY8C4127xxx-BLxxx, CY8C4128xxx-Sxxx, CY8C4128xxx-BLxxx,

CY8C414[5,6,7,8], CY8C424[4,5], CY8C4246xxx-DSxxx, CY8C4246xxx-Mxxx, CY8C4246xxx-

Lxxx, CY8C4247xxx-Mxxx, CY8C4247xxx-Lxxx, CY8C4247xxx-BLxxx, CY8C4248xxx-Lxxx,

CY8C4248xxx-BLxxx, CY8C454[6,7,8], CY8C472[4,5], CY8C474[4,5]

Infienon

XMC1

XMC1100-xxxxx0[008,016,032,064], XMC120x-xxxxx0[016,032,064,128,200],

XMC130x-xxxxx0[016,032,064,128,200], XMC140x-xxxxx0[032,064,128,200],

Infineon

XMC4

XMC410x-xxxx[64,128], XMC4200-xxxx256, XMC4300-xxxxx256, XMC440x-xxxxx[256,512],

XMC450x-xxxxx[512,768,1024], XMC4700-xxxxx[1536,2048], XMC4800-

xxxxx[1024,1536,2048]

Renesas

RX

R5F5110[1,3,4,5,H,J], R5F5111[1,3,4,5,6,7,8,J], R5F5113[5,6,7,8], R5F5130[3,5,6,7,8],

R5F513T[3,5], R5F5140[3,5,6], R5F5230[5,6], R5F5231[5,6,7,8], R5F523E[5,6],

R5F523T[3,5], R5F523W[7,8], R5F524T[8,A,B,C,E], R5F524U[B,C,E], R5F526T[8,9,A,B,F],

R5F5651[4,7,9,C,E], R5F565N[4,7,9,C,E,D,N], R5F5660[4,9], R5F566N[D,N],

R5F566T[A,E,F,K], R5F5671[9,C,E],

R5F571M[F,G,J,L], R5F572M[D,N], R5F572N[D,N], R5F572T[F,K]

Renesas

RA

R7FA0E1x[5,7] , R7FA2A1xB, R7FA2A2xD,

R7FA2E1x[5,7,9], R7FA2E2x[3,5,7], R7FA2E3x[5,7],

R7FA2L1x[9,B], R7FA4E1x[B,D], R7FA4E2x9, R7FA4L1x[B,D] , R7FA4M1AB,

R7FA4M2x[B,C,D], R7FA4M3x[D,E,F], R7FA4T1x[9,B], R7FA4W1xD, R7FA6E1x[D,F],

R7FA6E2x[9,B],R7FA6M1xD,

R7FA6M2x[D,F], R7FA6M3x[F,H], R7FA6M4x[D,E,F], R7FA6M5x[F,G,H], R7FA6T1x[B,D], R7FA

6T2x[B,D], R7FA6T3xB, R7FA8D1x[F,H], R7FA8M1x[F,H], R7FA8T1x[F,H], R7FA8E1xF,

easyDSP help

 8

R7FA8E2xF

Toshiba

TX and

TXZ3

TMPM03[6,7]FW, TMPM06[1,6,7,8]FW, TMPM330F[D,W,Y], TMPM332FW, TMPM333F[D,W,Y],

TMPM341F[D,Y], TMPM365FY, TMPM366FD, TMPM367FD, TMPM368FD, TMPM369FD,

TMPM370FY, TMPM372FW, TMPM373FW, TMPM374FW, TMPM375FS, TMPM376FD,

TMPM37AFS,TMPM380F[W,Y], TMPM381FW, TMPM383F[S,W], TMPM384FD,TMPM3U0FS,

TMPM3U6F[W,Y], TMPM3V4F[S,W], TMPM3V6FW, TMPM440F[10,E], TMPM461F[10,15],

TMPM462F[10,15], TMPM46BF10, TMPM3H0F[M,S], TMPM3H1F[P,S,W,U], TMPM3H2F[S,U,W],

TMPM3H3F[S,U,W], TMPM3H4F[S,U,W], TMPM3H5F[S,U,W], TMPM3H6F[S,U,W],

TMPM3HLF[D,Y,Z], TMPM3HMF[D,Y,Z], TMPM3HNF[D,Y,Z], TMPM3HPF[D,Y,Z],

TMPM3HQF[D,Y,Z]

NXP

S32

S32K11[6,8], S32K14[2,4,6,8], S32K31[0,1,2,4], S32K34[1,2,4,8], S32M24[1,2,3,4],

S32M27[4,6]

NXP

LPC1xxx

LPC13x[1,2,3], LPC131[5,6,7], LPC134[5,6,7], LPC15x[7,8,9], LPC175[1,2,4,6,8,9],

LPC176[3,4,5,6,7,8,9], LPC177[3,4,6,7,8], LPC178[5,6,7,8], LPC181[2,3,5,7],

LPC182[2,3,5,7], LPC183[3,7], LPC185[3,7], LPC18S[3,5]7

Please contact easyDSP@gmail.com for new MCU support.

3. starting easyDSP

For those who use easyDSP first time, please refer to below steps.

The details could be different by target MCU.

 Step Process Remark

 1

 hardware connection

 between easyDSP and

MCU

 Hardware connection between MCU and easyDSP.

 Please refer the help file 'How to user MCU'.

 2
 correction of user

program

 First, inlude the source file and header file for easyDSP communication

into your project. You can find these files in the 'source' folder in the

folder easyDSP is installed.

 Second, modify the #define variable in the header file according to

your system. For some MCU, you don't need this process.

 Third, include this header file in the main.c and call the function for

easyDSP communication.

 Please refer to the help file 'How to user MCU'.

 3
 creation of easyDSP

project
 Creates easyDSP project. Refer to the help file 'Menus>Project'.

 4 MCU booting
 Booting of MCU via either 'RAM booting' or 'Flash ROM' menus.

 Refer to the help file 'Menus>MCU'.

 5 easyDSP monitoring
 Monitoring of variables of MCU program by using versatile easyDSP

windows.

mailto:easyDSP@gmail.com

easyDSP help

 9

 6
 modification of user

program

 For debugging of your program, change your program under IDE

environment.

 7 MCU booting Like step 4, boot MCU with new user program.

 8 easyDSP monitoring Like step 5.

4. Revision History
Version MCU Revision items

ver 11.4

Apr/2025

Common

- Sector selection in the flash programming dialog can be blocked by 'Freeze'

check box for some MCU series

Bug Fix : when using auto scale in Y-axis of plot window, same Y-axis range

is applied to all plot windows

TI C28x

- for Gen3 MCU, flash programming is supported even when the address

alignment of its section is wrong

- new style of flash dialog box for F2837xS, F2807x, F28002x, F28003xand

F28004x

Bug Fix :

- for Gen3 MCU, flash programming could fail if the section size exceeds

0xFFFF

- wrong identification of used sector in flash dialog of F28Px and F28001x

ST STM32

- new function to erase all the flash (Erase chip button in the flash dialog)

- new support for STM32U375x[E,G] and STM32U385xG (source file

easyStm32LL_v11.4.c is required)

- new support for STM32WBA50xG, STM32C051x[6,8], STM32C091x[B,C]

and STM32C092x[B,C]

- The error that periodic writing 32 bytes 0xFF data to flash for the specific

bootloader version of STM32H72x and STM32H73x is corrected

- support for both single and dual bank for STM32L471xE, STM32L475x[C,E],

STM32L476x[C,E] and STM32L496xE

Bug Fix :

- flash programming error for swapped dual bank of STM32U5, STM32L5,

STM32H7 and STM32G0

- compile error in the file "easyStm32LL v11.3.c" when using STM32H7 dual

core and STM32WL3x

- incorrect page address ofdual bank mode of STM32F76[5,7,9]xI and

STM32F77[7,8,9]xI

- flash programming for STM32WL33x is not working

NXP S32K
- support new MCU S32K series : S32K11[6,8], S32K14[2,4,6,8],

S32K31[0,1,2,4], S32K34[1,2,4,8], S32M24[1,2,3,4] and S32M27[4,6]

Renesas

RA

- support R7FA4L1x[B,D] and R7FA0E1x[5,7] (source file easyRA_v11.4.c is

required)

ver 11.3

Jan/2025

Common - DWARF5 support improvement

ST STM32 - support for STM32WB05xZ, STM32WB06xC, STM32WB07xC and

STM32WB09xE (source file easyStm32LL_v11.3.c is required)

easyDSP help

 10

- support for STM32H523x[C,E], STM32H533xE and STM32C071x[8,B]

Bug Fix : STM32WB09xE is not supported

Renesas

RA
- support for R7FA8E1xF and R7FA8E2xF

Renesas

RX

Bug Fix :monitoring failure of 8 bytes variable and pointer variable (bug

from ver 11.1)

ver 11.2

May/2024

TI C28x
- TMS320F28P55xS series support (source file easy28x_bitfield_v11.2.c is

required)

Bug Fix : flash programming error for bank 4 of TMS320F28P65xDH

ST STM32

- STM32U0 series support (source file easyStm32LL_v11.2.c is required)

- support for STM32U5A5xI,STM32U5F7xJ, STM32U5F9xJ, STM32U5G7xJ and

STM32U5G9xJ

- support for STM32WB09xE, STM32WBA54x[E,G], STM32WBA55x[E,G] and

STM32WL33x[8,B,C]

Renesas

RA
- RA2A2, RA8T1 MCU series support

Bug Fix : no new project created for RA8D1 MCU

Renesas

RX
- RX23E-B series support

ver 11.1

Jan/2024

Common

- Writing to variable is not allowed if the variable is located in the flash
Bug Fix : malfunction of plot window when 'Total plot period' is more than

71582 minutes

ST STM32
- STM32U535, STM32U545, STM32U595, STM32U599, STM32U5A5 and

STM32U5A9 series are supported

Renesas

RA

- RA2E3, RA4E2, RA4T1, RA6E2, RA6T3, RA8D1 , RA8M1 MCU series support

(together with easyRA_v11.1.c and easyRA_v11.1.h)

Bug Fix : flash programming not available for RA6M5 with flash area 1.5MB

or higher

Renesas

RX
- RX26T support

NXP

LPC1xxx

- support flash programming of LPC1500 series

- supportLPC1300, LPC1700 and LPC1800 (with onchip flash) series

Bug Fix : wrong address recognition of 'array of union' variable

TI AM2x

- changes related to RAM booting and flash programming (app image file

changeable, SBL baudrate changeable, no SBL image file provided by

easyDSP)

Bug Fix : no "MulticoreImageGen.exe" file exits in the easyDSP/Util folder.

Bug from v10.8 to v11.

ver 11

Sep/2023
TI C28x

- Support for TMS320F28P65x (source file v11 is required)

- F2837xD, F2838xD : change of sharable memory management for CPU2

ram booting (source file v11 is required)

Bug Fix : In case TMS320F2838xD CPU1 uses DriverLib libray : CM fails to

flash boot if CPU2 is used (source file 'easy28x_driverlib_v11.c' is required)

easyDSP help

 11

TI MSPM0 - Support for MSPM0 series

ver 10.9

Jun/2023

ST STM32

- S upport for STM32H5 and STM32WBA series with new source file

'easyStm32LL v10.9.c'
Bug Fix : verifying flash failed for STM32H7, STM32L0, STM32L1, STM32L5

and STM32U5 in some case due to wrong flash programming

NXP

LPC1500
- supports NXP 1500 series (no support flash programming)

ver 10.8

Apr/2023

Common

- Multi dimensional array is supported upto 10 dimension. In the previous

version, only up to 4 dimension.

- Array window : when copying the selected cells to clipboard, easyDSP first

fills the empty cells if any.

TI C28x

- Support for TMS320F280015x with new source files

(easy28x_bitfield_v10.8.c or easy28x_driverlib_v10.8.c)

Bug Fix : for TMS320F280013x, flash programming doesn't work out in

some case

ST STM32 - supports STM32C0 MCU series with new source file 'easyStm32LL v10.8.c'

Renesas

RX
- supports RX MCU series

ver 10.7

Jan/2023

Common

- Watch window : variable row can be moved up and down

- Watch/Memory/Tree/Array windows : optionally highlight the changed cell

with yellow background color

TI AM2x - Support for AM263x

TI TM4C - Support for TM4C123x and TM4C129x

ver 10.6

Nov/2022
TI C28x

- Support for TMS320F280013x with new source files

(easy28x_bitfield_v10.6.c or easy28x_driverlib_v10.6.c)

- No need to run easyDSP as administrator

Bug Fix : Symbol information is not extracted in multi core MCU from CPU2

(bug for version 10.5.1 only)

ver 10.5.1

Nov/2022
TI C28x

Bug Fix : Flash operation is not working with error message "The variables

in flash API wrapper are not fully recognized!" (bug for version 10.3 and

higher)

ver 10.5

Nov/2022

Common

- No more support for old style memory window

- Memory Window : In case &var format is used as address input, if it

is changed with code modification, the address of the window is

automatically changed after MCU booting.

Bug Fix :

- Command Window : incomplete auto variable seeking for

struc/union/bitfield variables

ST STM32

- Source file is updated to easyStm32LL_v10.5.c. With this,

 1. STM32G0x : In the RAM booting and Flash Programmer dialog, entering

bootloader is improved

 2. STM32H7 dual core (STM32H745x, STM32H747x, STM32H755x

and STM32H757x) : Data cache usable

easyDSP help

 12

 3. If FIFO is available to USART, you can use it to speed up easyDSP

communication

Toshiba

TXZ3
- supports Toshiba TXZ3 MCU series

ver 10.4

May/2022

Common

Bug Fix :

- When using DWARF4 or DWARF5 debugging information format with ARM

MCU, the address and bit location of bitfield variable is not correct in certain

cases.

TI C28x
Bug Fix :

- For 2838x, the flash operation is not working unless all the CPU1, CPU2 and

CM are used in the project. This is the bug of v10.3 and v10.3.1 only.

Toshiba

TX
- supports Toshiba TX MCU series

ver 10.3.1

Apr/2022
TI C28x

Bug Fix :

- For 2838x, the easyDSP project is not created/open unless all the CPU1,

CPU2 and CM are used in the project. This is the bug of v10.3 only.

ver 10.3

Apr/2022

Common

- Watch window : address column includes bit information in case ofbitfield

variable (for ex, 0x1234@bit1-2)

- Chart window : 1 dimmentional array variable only. count input by user is

blocked. It's fixed to array count.

- Tree window : mouse right click toggles the display mode (decimal =>

hex-decimal => binary => decimal....)

- Memory window : versatile address input format and comment are enabled

- Faster symbol information processing

- Driver file updated to CDM212364_Setup.exe

- Display mode (hex or dec or bin) for bitfield variable is changeable

Bug Fix :

- Member of anonymous structure/union variable is not properly displayed

- Anonymous bitfield member is not properly displayed

- Bitfield member with its size more than 4 bytes is not properly displayed

TI C28x

- When using multiple easyDSP projects for multi core MCU such as 2837xD

and 2838xS/D, If the output file of CPU2 or CM is reloaded as requested by

CPU1, below message box is displayed.

- 32bit Windows is not supported for COFF debugging model

- Register window : no more support

- More stable operation of 'Flash API speed [bps]' function in flash dialog

(introduced from v10.1)

Bug Fix :

- For 2837xD and 2838xS/D, the error message "Can't open *.bin file!" could

easyDSP help

 13

show up when the output file of CPU2 or CM is updated after entering to flash

dialog.

- For 2837xD and 2838xS/D, the old out file of CPU2 and CM could be used

for RAM booting or flash writing if there is no easyDSP project is open for

CPU2 and CM.

- For 2837xD with coff debugging model, CPU2 program is not updated in the

flash dialog

ST STM32

- easyDSP uses the hex file IDE created when ram booing and flash

programming. please make IDE create hex file in every compiling time. Note

that the other option available in the previous easyDSP which easyDSP itself

makes hex file is not available now !

Bug Fix :Flash is programmed with the latest user program regardless of

your choice if you use the hex file IDE created

Infineon

PSoC4

Bug Fix : Flash is programmed with the latest user program regardless of

your choice

Infineon

XMC4

Bug Fix : Flash is programmed with the latest user program regardless of

your choice

Renesas

RA
First release for Renesas RA MCU series

Infineon

XMC1
First release for Infineon XMC1 MCU series (only for monitoring. flash

programming not supported)

ver 10.2

Jan/2022

TI C28x Bug Fix : F2837xS : flash dialog box not open (bug of v10.1)

Infineon

PSoC4
First release for Infineon PSoC4 MCU series (RAM booting not supported)

Infineon

XMC4
First release for Infineon XMC4 MCU series (RAM booting not supported)

ver 10.1

Nov/2021

Common

- New style memory window (check futher)
Bug Fix :

- Character value (ex, 'A') can be assigned to non character type variable

- In array window, character value (ex, 'A') can't be assigned to character

type variable

- floating value can be assgined to pointer variable to float or double or long

double

TI C28x

- F28003x : newly supported

 (must use the latest easyDSP source file version 10.1, CCSv11 and

compiler version is 21.6.0.LTS)

- F2802x, F2802x0, F2803x, F2805x, F2806x, F2807x, F2837xS, F2837xD,

F28004x, F28002x, F2838xD and F2838xS : flash operation speed up (max.

twice)

 Please choose bps to speed up. Note some

bps could be not working.

- F2807x/F2837xS/F2837xD : supporting internal clock source

- F2802x Rev.0 : No more support

easyDSP help

 14

- F2838xS/D CM : 'Enables fast verifying' checkbox in RAM booting dialog is

now disabled.

- Multi core F2837xD and F2838xS/D MCU : When RAM booting or flash

programing in easyDSP project for CPU1, the communication is paused in the

easyDSP project for CPU2 and CM if the projects are open in the same PC.

- new easyDSP DriverLib source file (easy28x_driverlib_v10.1.c) : supports

F28003x, new pin mux naming of C2000Ware_4_00_00_00 and 32bit

address support for Gen3 MCU

- new easyDSP DriverLib source file (easy28x_cm_driverlib_v10.1.c) :

enabled access to EtherCAT RAM area and ECC, address alignement and

range check to prevent Hard Fault

- new easyDSP BitField source file (easy28x_bitfield_v10.1.c) : supports

F28003x and 32bit address support for Gen3 MCU

Bug Fix :

- struct/union variable recognition error (bug in v10)

- system error happens when accessing TI OTP memory area in Memory

window

- F2838xS/D CM : failed in verifying RAM booting in some cases

ST STM32

- No more support for HAL based easyDSP source file (due to more resource

burden than LL based one)

- LL based easyDSP source file improvement (address alignment check and

others) : please use easyStm32LL_v10.1.c

- STM32WB10xC and WB15xC : new support

- STM32U5 series : new support

Bug Fix :

- used page of flash is not identified for some MCUs which has 128bytes page

size

ver 10

May/2021

Common Bugs Fixed : Invalid struct or union variable is registered in tree window

TI C28x

- Improved auto bauding process for F2837xS, F2837xD and F2807x

- supports class type for C++

- Improvements in flash dialog (except C2834x)

 1. check if all used flash sectors are selected to be erased before

"Erase>Program..." button is clicked

 2. button for all flash operation (erase to reset)

 3. update output file when operations to flash is requested (such as

program, verify, select used or select not used), not when flash dialog is

open.
Bugs Fixed :
- F2837xD and F2838xS/D: Even though updated out file is declined by user

in the flashROM dialog, updated out file is programmed for CPU2 and CM

- F2837xD and F2838xS/D: If *.out file is updated after entering to flashROM

dialog or RAM booting dialog, updated out file is not programmed if easyDSP

project for CPU2 or CM is not activated.

ST STM32

- first release for ST STM32 series (dedicated easyDSP pod required)

- supporting F0, F1, F2, F3, F4, F7, G0, G4, H7, L0, L1, L4, L5, WB and

WL series

ver 9.5

Dec/2020
TI C28x

- No more legacy bitfield source file from easyDSP installation package

- Timing of /BOOT pin of easyDSP pod is changed

- For more stable CPU2 RAM booting of F2837xD/F2838xD, easyDSP source

file

easyDSP help

 15

 (easy28x_BitField_v9.5.c/ easy28x_DriverLib_v9.5.c) is upgraded.

 Please check the help file.

Note

- For RAM booting of F2837xD/F2838xD CPU2 : please use

"easy28x_driverlib_v9.5.c" and "easy28x_bitfield_v9.5.c" source files

Bug Fix :

- wrong symbol display at 0x0 address in Memory window (v9.3 and v9.4

only)

- 2807x, 2837xS, 2837xD CPU1 : incorrect reserved RAM region check for

boot-rom (v9.4 only)

ver 9.4

Oct/2020
TI C28x

- Chart window improvement : Speed up for chart window update (helpful for

big size array) by enabling 'Enable fast reading' option. More window update

frequency. Paused when communication is failed a lot.

- Speed up for verifying RAM booting. Pls enable 'Enable fast verifying'

option.

- Better autobauding of flashAPI wrapper in the flashROM dialog of 28002x,

2838x.

- speed up by skipping verifying of flashAPI wrapper booting in flashROM

dialog

 (note : for 28002x, 2837x and 2838x, this function was applied from the

previous version. It is applied now to all MCUs)

- one time reading of 4 and 8 bytes variable in the bitfield based source files

(easy28_bitfield_v9.4.c and easy28_gen2_bitfield_v9.4.c)

- Change in the title of menu and its shortcut (Serial Booting, ALT+S ->

Ram Booting, ALT+R)

Note

- 2838x CM : please use "easy2838x_cm_driverlib_v9.4.c"

Bug Fix :

- Chart window : in some cases, it is not updated properly after out file

update

- Tree window : not valid variable with * operator in variable list (bug of v9.3

only)

- 2838x : When using 2838x CPU1 and CM, updated CM program is not

reflected automatically to CM project after CM program is booted in CPU1

project

- 2807x, 2837xS, 2837xD CPU1, 2837xD CPU2, 2838x CPU2 : incorrect

reserved RAM region check for boot-rom

- 2838x CM : failed address is not correct when verifying is failed

- 2838x CM : flash rom writing error when section start address is 64bit

aligned

ver 9.3

Jun/2020
TI C28x

- checking before RAM booting if user code overlaps with memory region for

boot rom and easyDSP

- New bitfield source now available for TMS320F280x, F281x and F28044

- bitfield source now available for TMS320F2838xS/D for CPU1 and CPU2

- value at address operator (*) is supported for pointer variable

Bug Fix :

- Error in flashrom operation due to skipping booting with flashAPI wrapper

- time interval not working in watch window

- F2838x CM section alignment check error in flashrom dialog

ver 9.2 TI C28x - TMS320F2838x is supported with DriverLib only

- TMS320F28002x is supported

easyDSP help

 16

Apr/2020 - set Rx input pin to pullup type to increase noise immunity

- New bitfield source now available for TMS320F2802x, F2802x0, F2803x,

F2805x and F2806x

Bug Fix :

- In some cases, bin file is not created

- In some cases, dwarf version 4 is not properly supported

- Windows are not updated after 'Reload *.out' menu execution

- treat pointer to struct/uniton variable as struct/unition variable in Tree

window

- 28004x flash rom : 'select all' button not working in flash dialog window

- 28004x flash rom : not working if clock source is not external 20MHz

ver 9.1

Mar/2020
TI C28x

- DriverLib based easyDSP source files (28004x, 2807x, 2837xS and

2837xD) and example main.c

- new bitfield based easyDSP source files (28004x, 2807x, 2837xS, 2837xD,

2823x, 2833x and 2834x) and example main.c or main_gen2.c

- output file reloading menu

- supports ELF-based Embeded Application Binary Interface (EABI)

- improved flashAPI wrapper booting in flash rom dialog of 2837xD, 2837xS,

2807x and 28004x

Bug Fix :

- pointer to struct variable is registered in Tree window

- v9.03 only : error in flashAPI wrapper booting in flash rom dialog

of 2837xS, 2807x and 28004x

ver 9.03

Jan/2020
TI C28x

Bug Fix (Bugs only for ver 9.x) :

- auto bauding failure in case of 2837xS, 2837xD, 2807x and 28004x

- project is not open if project folder and folder of *.out file is different

ver 9.02

Dec/2019
TI C28x

- When creating new project, user need to set debugging model (either coff

or dwarf) of compiler in its project setting. When opening existing project

which was created before easyDSP verion 9.02, coff is selected by default.

ver 9.01

Dec/2019
TI C28x

Bug Fix :
- For some cases, easyDSP can't tell compiler option correctly.

ver 9

Dec/2019
TI C28x

- supports the latest TI compiler version greater than ver.15

- supports "--symdebug:dwarf" compiler option

- No more support for "--symdebug:coff"

 Note that coming update could be not available for "--symdebug:coff"

- when using "--symdebug:dwarf" compiler option, display variable type with

its typedef name (ex, Uint32)

ver 1 to ver 9 TI C28x - contact easydsp@gmail.com

ver. 1.0

Aug/1999
TI 3x - First release

5. Limitation

mailto:easydsp@gmail.com

easyDSP help

 17

Please kindly keep in mind some limitation when using easyDSP as belows.

Common

1. Only little endian is supproted.

2. easyDSP uses the interrupt service routine for its communication to MCU.

 Therefore if the allocated resource time for the interrupt service routine for easyDSP communication is

limited due to the lack of resource, easyDSP could be not proplerly working.

3. Value at address operator (*) is supported to pointer variable to basic type only, and for C28x only. That

is, not supported to for example, pointer to pointer, pointer to array and so on.

4. Arrow operator (->) is not supported.

5. Writing to 'bit field' type variable is not allowed.

6. Multi dimensional array is supported upto 10 dimension.

Limitation

Pleae check the limitation of easyDSP by MCU. o = supported, x = not supported.

Flash programming is not available in case the protection or security function is applied.

For details, please check the relevant menu for each MCU.

Vendor MCU Monitoring
 RAM

booting

Flash

program
Other limitations

TI

C28x o o o 1. no support for OTP

AM263x o o (1) o (1) 1. limited by SBL

TM4C o x o 1. no support to EEPROM

MSPM0 o x o (1) 1. only MAIN flash

ST STM32 o o (4) o (1,2)

1. No support to write to data memory, OTP

memory and option bytes.

2. No support to Trust Zone and Secure MPU
3. Limitation from the bugs and limitations of

MCU built-in bootloader.

4. RAM booting is not supported for dual core

MCU.

Infienon

PSoC4 o x o (2)

1. No support for PSOC4000 MCU since UART is

not available.

2. Flash programming feasible with single-

application bootloader configuration only.

XMC1 o x x

XMC4 o x o

Renesas
RA o x

o (1), x

(2)

1. For MCU with DLM, DLM state transition is

not supported.

2. Flash programming is not supported for RA0

series.

RX o x o (1,2) 1. Protected area by area protection or trusted

easyDSP help

 18

memory is not programable.

2. For RX64M, RX660, RX66T, RX71M and

RX72T series, programming of option setting

memory is not supported.

Toshiba

TX o x o

 TXZ3 o x o

 NXP

S32K

S32M
o x o no support to EEPROM

 LPC1x00 o x o no support to EEPROM

6. Pod configuration

Pin Description

The signal pins of easyDSP pod are shown below . Its pin pitch is 2.54mm.

For easyDSP connector in your board, please use either BHS-01-10P or XG4C-1031 connector.

Note the arrow mark on the connector.

Pod type 1 and 2 : Pod for TI C28x MCU

name Description

1 RX Output pin connected to RX of MCU

2 GND Ground pin. Connected to #10 pin internally to easyDSP pod.

3 TX Input pin connected to TX of MCU

4 VDD Voltage bias connected to VDDIO of MCU (ex : 3.3V)

5 /BOOT

Output pin with pseudo open collector.

It becomes Low when entering bootrom by resetting MCU.

Otherwise, no signal output from this pin.

6 reserved Do not connect

easyDSP help

 19

7 reserved Do not connect

8 reserved Do not connect

9 /RESET

Output pin with pseudo open collector.

It b ecomes Low when resetting MCU.

Otherwise, no signal output from this pin.

10 GND Ground pin. Connected to #2 pin internally to easyDSP pod.

Pod type 3 : Pod for Arm Cortex series and other cores (RX)

name Description

1 RX Output pin connected to RX of MCU

2 GND Ground pin. Connected to #10 pin internally to easyDSP pod.

3 TX Input pin connected to TX of MCU

4 VDD Voltage bias connected to VDDIO of MCU (ex : 3.3V or 1.8V)

5 /BOOT

Output pin with pseudo open collector.

It becomes Low when entering bootrom by resetting MCU.

Otherwise, no signal output from this pin.

6 reserved Do not connect

7 BOOT

Output pin with pseudo open emitter.

It becomes high when entering bootloader by resetting MCU.

Otherwise, no signal output from this pin.

8 reserved Do not connect

9 /RESET

Output pin with pseudo open collector.

It b ecomes Low when resetting MCU.

Otherwise, no signal output from this pin.

10 GND Ground pin. Connected to #2 pin internally to easyDSP pod.

/BOOT, BOOT pin

These pins determines how MCU will boot after reset, either boot with flash to execute user program or

boot with bootmode to conduct RAM booting or flash programming.

These pins are not used at all (= no signal output) when MCU boot with flash.

They are active only when MCU boot with boot mode as below :

 MCU

Used

boot

pin

boot pin operation

easyDSP help

 20

C28x

XMC4

TX TXZ3

LPC1x00

S32

/BOOT

/BOOT pin becomes low when MCU reset.

Around 1sec after MCU reset is released, /BOOT pin becomes open and no signal

output.

STM32 BOOT

BOOT pin becomes high when MCU reset and keeps high during boot mode period.

BOOT pin becomes open and no signal output when exiting boot mode (= exiting from

Ram booting or flash dialog).

AM2x

TM4C

MSPM0

BOOT

BOOT pin becomes high when MCU reset.

Around 1sec after MCU reset is released, BOOT pin becomes open and no signal

output.

RA

RX
/BOOT

/BOOT pin becomes low when MCU reset.

RA : /BOOT pin becomes open and no signal output when entering "Command

acceptance phase" during boot mode.

XMC1

PSOC4

not

used
not used

You can use MCU pin that connects to /BOOT or BOOT pin in your application progam if you follow

below guidline.

Please check the voltage level of the MCU pin at the beginning of your application program (input IO

mode as reset default). Once the voltage level of the pin becomes high or low depending on used boot

pin, you can set the MCU pin accordingly and start to use.

LEDs

There are two LEDs to indicate the status as below. Both LEDs should be ON during easyDSP operation

(not blinking).

'DSP' or 'MCU' LED is on : MCU controller board is now power supplied (= #4 pin is live with 3.3V)

'USB' LED is on : easyDSP pod is well connected with easyDSP PC program. It's ON when easyDSP

project is open, OFF when easyDSP project is closed.

Note) for optic cable easyDSP, DSP LED of PC side pod and USB LED for MCU side pod are not working.

 no special meaning to the color of LED.

Connection to and Disconnection from PC and MCU

Don't make any physical connection or disconnection of easyDSP pod to/from PC and MCU during MCU

operation. It makes unintentional reset to MCU.
In case you can not avoid connection/disconnection during MCU operation, connect PC first then MCU,

disconnect MCU first and then PC. This will minimize the chance of unintentional reset to MCU.

Connection to PC

If possible, please connect easyDSP pod directly to PC (not via USB extension port). And please use

the new USB cable to secure its connection quality.

Specification

Items Pod type 1 :

TI C28x MCU

Pod Type 2 :

TI C28x MCU

Pod Type 3 :

Arm Cortex-M

easyDSP help

 21

standard pod optic cable pod and RX

standard pod

Supply voltage range to VDD
min 3, typ 3.3, max 5

[V]
same to left min 1.65, max 5 [V]

Recommended supply voltage to

VDD
3.3V 3.3V

MCU VDDIO

(ex, 3.3V or 1.8V)

Input voltage range -0.5 VDD+0.5 [V] same to left same to left

Supply current to VDD max 3mA max 50mA max 10mA

min. isolation voltage 2.0kVrms@1min - 2.0kVrms@1min

Operating free-air temperature 5 .. 55 [°C] same to left same to left

Starage temperature range -20 .. 65 [°C] same to left same to left

 Relative humidity (non-

condensing)
max 90% rH same to left same to left

Size (without cables) 82 x 56 x 21 mm^3
same to left but two

pods

81 x 42.5 x 21

mm^3

 Weight (without cables) 140 g 330 g 62g

 USB interface USB 2.0 Hi-Speed same to left same to left

7. How to use MCU

7.1 C28x

7.1.1 C28x programming

7.1.1.1 common

BitField and DriverLib

There are two folders in the 'source/C28x' directory of installed easyDSP.

'BitField' folder : Bitfield based easyDSP source files.

'DriverLib' folder : DriverLib(C28x Peripheral Driver Library) based easyDSP source files

please refer to the TI link for further understanding of BitField/DriverLib. You can use only one out of

two methods.

If you use the bitfield based functions in your project, then please use also bitfield based easyDSP

source files, or vice versa.

Also check below which method is supported for which MCU.

http://www.ti.com/lit/an/spraa85e/spraa85e.pdf

easyDSP help

 22

 Bitfield DriverLib

 F28001x

 F28002x

 F28003x

 F28004x

 F2807x

 F2837x

 F2838x

 F28P55x

 F28P65x

O O

C2834x

F2823x

F2833x

F281x

F280x

F28044

F2802x0

F2802x

F2803x

F2805x

F2806x

 O

Debugging model option

easyDSP supports below two debugging model options, --symdebug:dwarf and --symdebug:coff. Note

that the latest TI C28x compiler (version 16 or above) doesn't support--symdebug:coff option.

Accordingly further support for this option will be very limited. Recommend to use --

symdebug:dwarf option from now.

Endianness option

easyDSP help

 23

Only little endian is supported by easyDSP. Please set endianness like below.

Section alignment when using Gen3 MCU

easyDSP uses TI's flash API to access onchip flashrom. TI flash API of Gen.3 MCU (for example.

F2807x, F28001x, F28002x, F28003x, F28004x, F2837x, F2838x and F28Px) requires section

alignment on the address (min. 4 words boundary or recommended 8 words boundary) depending on

MCU. That is, the start address of the section should be either 0x*0, 0x*4, 0x*8 or 0x*C for C28x core

and either 0x*0 or 0x*8 for Arm Cortex-M4 (ex, F2838x CM). As shown below linker command file

example from TI, it is already applied as recommended value for default sections like .text but you

need to do it yourself for your own section .

easyDSP help

 24

<linker command file excerpt of TMS320F28388 CPU1/CPU2>

Linker option

It is recommended the entry point is set to the 'code_start' label (in TI's

DSP28x_CodeStartBranch.asm with watch-dog disabled). This is done by linker option -e in the project

build options, that is,-ecode_start. It prevents unintentional watch dog reset during c_int00 operation

which could happen in long size program where it takes long time to initialize many variables.

7.1.1.2 multi cores

Multi core MCU

Target MCUs are F28P65xD, F2827xD, F2838xS and F2838xD.

Predefined symbols

Predefined symbols such as CPU1, CPU2, CM and _FLASH are referred in easyDSP source files when

multi-core MUC is used.

If target core is CPU2, CPU2 should be predefined. If target core is CM, CM should be predefined.

These symbols are usually predefined by CCS. But please check.

easyDSP help

 25

Using debugger

Don't use multi-core booting related functions (easyDSP_Boot_Sync) easyDSP is providing in case you

use debugger. Debugger will load the memory of each core. please refer to #define USE_DEBUGGER of

main.c in easyDSP source file folder.

easyDSP uses MCU resource for multi core Ram booting

Some MCU resource is used by easyDSP to implement CPU2/CM ram booting. Please check below table.

You should not use these resource before CPU2/CM booting (calling of easyDSP_Boot_Sync()

function) in your code. But you can use them after the booting.

 MCU F2837xD
F2838xS

F2838xD
 F28P65xD

 Resource used by easyDSP

during ram booting CPU2 and CM

IPC_FLAG0

IPC_FLAG5

IPC_FLAG31

IPC_FLAG0

IPC_FLAG5

IPC_FLAG6

IPC_FLAG30

IPC_FLAG31

CPU1 to CPU2 MSGRAM1

CPU1 to CM MSGRAM1

IPC_FLAG0

IPC_FLAG5

CPU1 to CPU2 MSGRAM0

Flash booting location of F2838x and F28P65xD for CPU2 and CM

In the source file of easyDSP, the flash booting location is fixed :

For F2838xD CPU2 and CM, it is set to sector 0.

For F28P65xD CPU2, it is set to bank 3.

In case you like to change its location, please modify below part in easyDSP_Boot_Sync() function in

the easyDSP source file.

F2838x BitField :

ezDSP_Device_bootCPU2(BOOTMODE_BOOT_TO_FLASH_SECTOR0);

ezDSP_Device_bootCM(BOOTMODE_BOOT_TO_FLASH_SECTOR0);

F2838x DriberLib :

Device_bootCPU2(BOOTMODE_BOOT_TO_FLASH_SECTOR0);

Device_bootCM(BOOTMODE_BOOT_TO_FLASH_SECTOR0);

easyDSP help

 26

F28P65xD BitField : ezDSP_Device_bootCPU2(BOOTMODE_BOOT_TO_FLASH_BANK3_SECTOR0);

F28P65xD DriverLib : Device_bootCPU2(BOOTMODE_BOOT_TO_FLASH_BANK3_SECTOR0);

Restriction of memory use for RAM booting of F2838x and F28P65xD

RAM booting via SCI port for CPU2 and CM of F2838x and F28P65xD is not supported by TI. easyDSP

uses workaround to boot CPU2 and CM via SCI. First, boot CPU1 via SCI with user program then boot

CPU2/CM with small agent program (not user program) via 'IPC message copy to RAM' boot mode.

Then this agent program downloads user program to CPU2 and CM via SCI. With this, there is some

restriction of memory usage to CPU2 and CM for this agent operation. Please check below table and

reflect this to command file accordingly.

Restriction of memory usage in user program

when ram booting of F2838x

 Restriction of memory usage in user program

when ram booting of F28P65xD

CPU1

user program
 no restriction no restriction

CPU2

user program

 part of M1 RAM (0x400 - 0x7F7) can't be used

as initialized section

 part of M1 RAM (0x400 - 0x5FF) can't

be used as initialized section

CM

user program

 part of S0 RAM (0x2000.0800 - 0x2000.0FFF)

can't be used as initialized section

Change in CPU2 RAM booting of F2837xD and F2838xD from
easyDSP source file version 11

Before easyDSP source file version 11, for CPU2 ram booting of F2837xD and 2838xD, all the GSRAM

(Global Shared RAM) are allocated to CPU2 during CPU2 ram booting and then allocated to CPU1 after

ram booting in the easyDSP_SCIBootCPU2() function of easyDSP source file.

So, ram booting related code of CPU1 (.text section of easyDSP_SCIBootCPU2() function) should be

located to LSRAM (Local Shared RAM). And if required from CPU2 user program, CPU1 should allocate

GSRAM to CPU2 after CPU2 ram booting.

This way requires lots of restriction and caution and not any longer recommended.

In the source file version 11, GSRAM is allocated to neither CPU1 nor CPU2 in the

easyDSP_SCIBootCPU2() function.

Instead, in the CPU1 program main.c, the required GSRAM is allocated to CPU2 before calling

easyDSP_SCIBootCPU2().

With this, no more restriction and caution needed.

Booting sequence and syncronization of F2837xD and F28P65xD

The flash booting is executed in a sequence of CPU1 and then CPU2 without any synchronization

between.

The RAM booting is executed in same sequence with synchronization (i.e. the end of

easyDSP_Boot_Sync() is synchronized).

easyDSP help

 27

Note that necessary memory should be allocated to CPU2 before CPU1 is calling easyDSP_Boot_Sync().

Booting sequence and syncronization of F2838x

The flash booting is executed in a sequence of CPU1, CPU2 and CM without any synchronization

between.

The RAM booting is executed in same sequence with synchronization between (i.e. the end of

easyDSP_Boot_Sync() is synchronized).

Note that necessary memory should be allocated to CPU2 and CM before CPU1 is calling

easyDSP_Boot_Sync().

F2838x CPU2 and CM clock

When CPU1 boots CPU2 and CM, CPU1 set their clock frequency to 200MHz and 125MHz respectively.

If you like to change them, you should modify the related source file by yourself.

When out file has been changed

The output file (*.out) is changed whenever the user program is compiled. When you download the

new output file by either RAM booting or flash programming in the easyDSP project connected to CPU1,

the easyDSP project connected to another cores should be updated by new output file too.

In case easyDSP for multi cores are all connected to the same PC, this process is done automatically,

meaning easyDSP project for CPU1 asks easyDSP project for CPU2 to load new output file.

In case they are open in different PC, you have to load new output file for another cores manually, by

clicking 'MCU > Reload *.out' menu.

7.1.1.3 using BitField

SCI ISR (Interrupt Service Routine)

easyDSP help

 28

easyDSP uses an SCI interrupt to communicate with TMS320F28x. Therefore, the user program should

include SCI ISR (Interrupt Service Routine) code which easyDSP provides. It depends on TMS320F28x

type.

You can find these source files at the folder of easyDSP installation 'source\C28x\BitField'.

note) For F2838x CM, DriverLib based source file should be used.

C28x series SCI ISR files

F28001x

F28002x

F28003x

F28004x

F2807x

F2837x

F2838xS CPU1

F2838xD CPU1

F2838xD CPU2

F28P55x

F28P65x

easy28x_bitfield_v11.2.c
easy28x_bitfield_v11.2.h

C2834x

F2823x/2833x

F2802x/F2802x0

F2803x

F2805x

F2806x

F280x

F281x

F28044

easy28x_gen2_bitfield_v9.4.c

easy28x_gen2_bitfield_v9.4.h

Name and its role of key functions in ISR code is

easyDSP_SCI_Init() : Initializes SCI

easy_RXINT_ISR() : ISR for RX_INT

easy_TXINT_ISR() : ISR for TX_INT

easyDSP_SPI_Flashrom_Init() : for external SPI flashrom booting of C2834x

easyDSP_Boot_Sync() : multi-core MCU (F2837xD, F2838xS, F2838xD) boot and synchronization

You SHOULD change some #define variables in the header file (not source file) accordingly to your

target system.

For example, below selection is targeting for F2807x + CPUCLK 150MHz + LSPCLK = CPUCLK/4 +

easyDSP communication @ 115200 bps.

#define F28P65xS 0

#define F28P65xD_CPU1 0

#define F28P65xD_CPU1_CPU2 0

#define F28002x 0

#define F28003x 0

#define F28004x 0

#define F2807x 0

#define F2837xS 0

#define F2837xD_CPU1 0

#define F2837xD_CPU1_CPU2 0

#define F2838xS_CPU1 0

#define F2838xS_CPU1_CM 0

#define F2838xD_CPU1 0

easyDSP help

 29

#define F2838xD_CPU1_CPU2 0

#define F2838xD_CPU1_CM 0

#define F2838xD_CPU1_CPU2_CM 1

#define CPU_CLK 150000000L

#define LSP_CLK (CPU_CLK/4)

#define BAUDRATE 115200L

Please note that in case of MotorWare™, LSP_CLK should be same to CLK_CLK.

All variables in the ISR have prefix ‘ezDSP_’. Please don’t change these variables during your easyDSP

operation.

Interrupt Nesting

Interrupts are automatically disabled when an interrupt service routine begins. In other words, once

easyDSP ISR has been executed, your higher priority ISR can't be executed until easyDSP ISR has

been completed.

easyDSP source file provides buit-in interrupt nesting function assuming easyDSP SCI ISR has the

lowest priority.

For further information about interrupt nesting, please check

http://processors.wiki.ti.com/index.php/Interrupt_Nesting_on_C28x

Run easyDP ISR fast on the flash

To run easyDSP ISR fast and stable when system is running on the flash, please use #pragma in the

top-most part of easyDSP source file. Please refer to TI application note for 'ramfuncs' or '.TI.ramfunc'

section operation.

in the part of header file easy28x_bitfield.h

#if (F2823x || F2833x || C2834x)

#pragma CODE_SECTION(easy_RXINT_ISR, "ramfuncs");

#else

#pragma CODE_SECTION(easy_RXINT_ISR, ".TI.ramfunc");

#endif

NOTE) ".TI.ramfunc" is used instead of "ramfuncs" in case the latest MCU (ex, 2837x, 2807x, 28004x)

is used with the latest TI Support Library version (and compiler). Please check the file "F28x_SysCtrl.c"

to understand which one is proper.

NOTE) Especially when your program runs on the flash and program/erase the flash at the same time

with TI flash API, ISR of easyDSP should run on the ram, not on the flash. Any ISR routines that are

executed during flash API function call must completely reside outside of the flash and must not expect

to read data from the flash.

Single core programming

easyDSP requires appropriate interrupt settings to communicate with MCU. Below box shows its

example. At first, please set up the other interrupts except SCI. Then, call easyDSP_SCI_Init(). In the

call to the functions, related registers are set up for SCI communication and interrupts. Also please

check main_gen2.c or main_gen3.c example file in the source/C28x/bitfield folder.

#include " easy28x_bitfield_v11.2.h" or

#include " easy28x_gen2_bitfield_v9.4.h" or

main(void) {

http://processors.wiki.ti.com/index.php/Interrupt_Nesting_on_C28x

easyDSP help

 30

 // below function should be called after other interrupts settings and before while(1)

 easyDSP_SCI_Init();

 while(1) {

 }

}

C2834x programming for external SPI flash

Since 2834x doesn't have internal flash, easyDSP supports external flashs with SPI interface. They are

AT25DF021(2M bit), AT25DF041(4M bit), AT26DF081(8M bit), AT25DF321(32M bit), M25P20(2M bit),

M25P40(4M bit), M25P80(8M bit), M25P16(16M bit), M25P32(32M bit) manufactured by ATMEL or

Numonyx. SPI-A port setting is necessary for this.

Also please check main_gen2.c example file in the source/C28x/bitfield folder.

#include "easy28x_gen2_bitfield_v9.4.h "

 main(void) {

 // SCI port setting for easyDSP

 easyDSP_SCI_Init();

//SPI-A port setting for external flash

easyDSP_SPI_Flashrom_Init();

 while(1) {

 }

}

F2837xD, F28P65xD, F2838xD multi core programming

The use of header file and easyDSP_SCI_Init() function is same to that of single core MCU.

In addtion, easyDSP_Boot_Sync() function is required to boot and synchronize CPU2 and CM.

This function should be called in all cores (CPU1, CPU2 and CM) program.

Pease check main_gen3.c example file in the source/C28x/bitfield folder.

#include "easy28x_bitfield_v11.2.h"

main(void) {

 InitSysCtrl();

easyDSP help

 31

 // if CPU1 program, allocate the necessary sharable memory to CPU2 and CM

 // before easyDSP_Boot_Sync() is called

 // call this after sharable memory allocation and before easyDSP_SCI_Init()

 easyDSP_Boot_Sync();

 easyDSP_SCI_Init();

 while(1) {

 }

}

7.1.1.4 using DriverLib
ISR (Interrupt Service Routine) for SCI

easyDSP uses an SCI interrupt to communicate with TMS320F28x. Therefore, the user program should

include SCI ISR (Interrupt Service Routine) code which easyDSP provides.

You can find these source files at the folder of easyDSP installation 'source\C28x\DriverLib'.

 C28x series SCI ISR files

F28001x

F28002x

F28003x

F28004x

F2807x

F2837x

F2838x CPU1 and CPU2

F28P55x

F28P65x

easy28x_DriverLib_v11.2.c

easy28x_DriverLib_v11.2.h

F2838x CM
easy28x_cm_DriverLib_v10.1.c

easy28x_cm_DriverLib_v10.1.h

Name and its role of key functions in ISR code is

easyDSP_SCI_Init() : Initializes SCI

easyDSP_UART_Init() : Initializes UART of TMS320F2838x CM

easy_RXINT_ISR() : ISR for RX_INT

easyDSP_Boot_Sync(void) : Multi core MCU (F2837xD, F2838xS and 2838xD) booting and

synchronization

You SHOULD change some #define variables in the early part of the source accordingly to your

target system. For example, below selection is targeting for F2807x + easyDSP communication @

115200 bps.

#define F28002x 0

#define F28003x 0

#define F28004x 0

#define F2807x 1

#define F28P65xS 0

easyDSP help

 32

#define F28P65xD_CPU1 0

#define F28P65xD_CPU1_CPU2 0

 #define F2837xS 0

#define F2837xD_CPU1 0

#define F2837xD_CPU1_CPU2 0

#define F2838xD_CPU1 0

#define F2838xD_CPU1_CM 0

#define BAUDRATE 115200L

Please note that DEVICE_LSPCLK_FREQ constant in device.h file should be matching to your

system since SCI baudrate setting of easyDSP is based on that.

All variables in the ISR have prefix ‘ezDSP_ ’ . Please don ’ t change these variables during your

easyDSP operation.

Interrupt Nesting

Interrupts are automatically disabled when an interrupt service routine begins. In other words, once

easyDSP ISR has been executed, your higher priority ISR can't be executed until easyDSP ISR has

been completed.

easyDSP source file provides buit-in interrupt nesting function assuming easyDSP SCI ISR has the

lowest priority.

For further information about interrupt nesting, please check

http://processors.wiki.ti.com/index.php/Interrupt_Nesting_on_C28x

Run easyDP ISR fast and stable on the flash

To run easyDSP ISR fast and stable when system is running on the flash, please use #pragma in the

easyDSP header file. Please refer to TI application note for '.TI.ramfunc' section operation.

in the header file, easy28x_driverlib.h

 #pragma CODE_SECTION(easy_RXINT_ISR, ".TI.ramfunc");

NOTE) Especially when your program runs on the flash and program/erase the flash at the same time

with TI flash API, ISR of easyDSP should run on the ram, not on the flash. Any ISR routines that are

executed during flash API function call must completely reside outside of the flash and must not expect

to read data from the flash.

Single core MCU programming

easyDSP requires appropriate interrupt settings to communicate with MCU. Below box shows its

example. At first, please set up the other interrupts except SCI. Then, call easyDSP_SCI_Init(). In the

call to the functions, related registers are set up for SCI communication and interrupts. Also please

check main.c example file in the source/C28x/driverlib folder.

include " easy28x_DriverLib_v11.2.h"

main(void) {

 Device_init();

 // below function should be called after other interrupts settings

 easyDSP_SCI_Init();

 while(1) {

 }

http://processors.wiki.ti.com/index.php/Interrupt_Nesting_on_C28x

easyDSP help

 33

}

Multi core programming for CPU1 and CPU2 : F28P65xD, F2837xD,

F2838xS and F2838xD

The use of header file and easyDSP_SCI_Init() function is same to that of single core MCU.

In addtion, easyDSP_Boot_Sync() function is required to boot and synchronize CPU2.

This function should be called in both CPU1 and CPU2 program. Pease check main.c example file in the

source/C28x/DriverLib folder.

#include " easy28x_DriverLib_v11.2.h"

main(void) {

 Device_init();

 // called after Device_init() and before easyDSP_SCI_Init()

 easyDSP_Boot_Sync();

 easyDSP_SCI_Init();

 while(1) {

 }

}

Multi core programming for F2838x CM

The use of header file and easyDSP_UART_Init () function is similar to that of single core MCUs.

In addtion, easyDSP_Boot_Sync() function is required to boot and synchronize CM.

Pease check main_cm.c example file in the source/C28x/DriverLib folder.

#include " easy28x_cm_DriverLib_v10.1.h"

main(void) {

 CM_init();

 // called after CM_init() and before easyDSP_UART_Init()

 easyDSP_Boot_Sync();

 easyDSP_UART_Init();

 while(1) {

 }

}

7.1.1.5 F2837xD and F28P65xD usage
How to connect easyDSP

We need two easyDSP pods and two easyDSP programs and connect them properly to each CPU1 and

CPU2 for proper communication. easyDSP program can be executed with multiple instances with its

program title like easyDSP, easyDSP(2).

Careful procedure should be taken to connect first easyDSP program (titled easyDSP) to CPU1 and

then second easyDSP program (titled easyDSP(2)) to CPU2.

easyDSP help

 34

First, you connect single easyDSP pod to PC and then to SCI-A port of CPU1. Run easyDSP program

and open the project for CPU1. Then the easyDSP program and its project is connected to CPU1.

Then connect another easyDSP pod to PC and then to SCI-B port of CPU2. Run another easyDSP

program and open the project for CPU2.

NOTE) RAM booting and flash rom operation is possible for both CPU1 and CPU2 even with single

easyDSP pod and single easyDSP program. But in this case, the communication after booting with

CPU2 is not supported.

NOTE) Please use the single PC to connect easyDSP for both CPU1 and CPU2. This enables the

communication between two easyDSP programs and some mutual activities.

Project creation

easyDSP project for CPU1 requires two output files, one for CPU1 and another for CPU2. If you don't

specify the output file for CPU2, then you can not boot CPU2. And the communication with easyDSP is

fixed to CPU1.

easyDSP project for CPU2 requires the output file for CPU2 only. It should be same to the out file for

CPU2 used in the easyDSP project for CPU1.

<easyDSP program 1>

easyDSP help

 35

<easyDSP program 2>

RAM booting and flash programming

RAM booting, flash programming and MCU reset for CPU1 and CPU2 are done by CPU1, accordingly

done by easyDSP program connected to CPU1. The only thing that CPU2 does is verifying RAM booting

of CPU2. Please check below table for the details.

If easyDSP for CPU1 and CPU2 are connected to the single PC, easyDSP for CPU2 pauses its

communication when CPU1 is either RAM booting or flash programming.

operation easyDSP program 1 easyDSP program 2

CPU1, CPU2 RAM booting supported Not supported

Verifying CPU1, CPU2 RAM booting supported only for CPU1 supported only for CPU2

CPU1, CPU2 flashrom operation supported Not supported

CPU reset supported Not supported

7.1.1.6 F2838x usage
How to connect easyDSP

We need three easyDSP pods and three easyDSP programs and connect them properly to each CPU1,

CPU2 and CM. easyDSP program can be executed with multiple instances with its program title like

easyDSP, easyDSP(2) and easyDSP(3).

Careful procedure should be taken to connect first easyDSP program (titled easyDSP) to CPU1 and

then second easyDSP program (titled easyDSP(2)) to CPU2 and so on.

First, you connect single easyDSP pod to PC and then to SCI-A port of CPU1. Run easyDSP program

and open the project for CPU1. Then the easyDSP program and its project is connected to CPU1.

Then connect another easyDSP pod to PC and then to SCI-B port of CPU2. Run another easyDSP

program and open the project for CPU2.

Likewise, also for CM.

NOTE) RAM booting and flash rom operation is possible for CPU1, CPU2 and CM even with single

easyDSP pod and single easyDSP program connected to CPU1.

 But in this case, the communication after booting with CPU2 and CM is not supported.

easyDSP help

 36

NOTE) Please use the single PC to connect easyDSP for all CPU1, CPU2 and CM. This enables the

communication between easyDSP programs and some mutual activities.

Project creation

easyDSP project for CPU1 requires max. three out files, one for CPU1, the other for CPU2 and finally

last one for CM. If you don't use CPU2 or CM, please don't specify the out file of them. The

communication with easyDSP is fixed to CPU1.

easyDSP project for CPU2 or CM requires the out file for CPU2 or CM only. It should be same out file to

ones used in the easyDSP project for CPU1.

<easyDSP program 1>

easyDSP help

 37

<easyDSP program 2>

<easyDSP program 3>

RAM Booting and flash rom programming

RAM booting and flash programming for CPU1, CPU2 and CM are all done by CPU1, accordingly done by

easyDSP program connected to CPU1. The verification of RAM booting can be done by each CPU.

Please check below table for the details.

If easyDSP for CPU1, CPU2 and CM are connected to the single PC, easyDSP for CPU2 and

CM pause their communication when CPU1 is either RAM booting or flash programming.

operation easyDSP program 1 easyDSP program 2 easyDSP program 3

CPU1, CPU2, CM RAM booting Supported Not supported Not supported

Verifying CPU1, CPU2, CM RAM

booting

Supported only for

CPU1

Supported only for

CPU2

Supported only for

CPU2

CPU1, CPU2, CM flashrom Supported Not supported Not supported

easyDSP help

 38

operation

CPU reset Supported Not supported Not supported

7.1.2 C28x board setting

7.1.2.1 F28P65x
In this page, factory default is assummed. If you change User OTP (BOOTPIN_CONFIG, BOOTDEF), you

should modify the configuration accordingly.

MCU check below two pins at the reset to decide the booting mode.

 Boot Mode
GPIO72 GPIO84

(Default boot mode select pin 1) (Default boot mode select pin 0)

 Parallel IO 0 0

 SCI / Wait Boot 0 1

 CAN 1 0

 Flash / USB 1 1

Since easyDSP uses two kinds boot modes, SCI boot mode (RAM boot) and flash boot mode. Below

connection is recommended between easyDSP and MCU.

The easyDSP connected to CPU1 should use SCI-A (GPIO13 and 12 fixed).

In case of dual cores MCU (for example, F28P65xD), 2nd easyDSP is required to connect CPU2 via SCI-

B. In the easyDSP source file (easy28x_DriverLib.c or easy28x_bitfield.c) , GPIO 86 and 87 is used for

SCI-B. If another GPIO port is required for SCI-B, please change the hardware connection and modify

the easyDSP source file (in the function of easyDSP_SCI_Init) accordingly by yourself.

For other considerations,

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- TX/RX pins are directly connected to MCU pins

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec.

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

easyDSP help

 39

- /BOOT pin is connected to GPIO72 via 2kΩ series resistor

- /RESET pin is connected to reset generation circuit of MCU board (Time duration of /RESET pin is

around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

- Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

7.1.2.2 F2838x
Defino series TMS320F2838xD check below two pins at the reset to decide the booting mode.

 Boot Mode
GPIO72 GPIO84

(Default boot mode select pin 1) (Default boot mode select pin 0)

 Parallel IO 0 0

 SCI / Wait Boot 0 1

 CAN 1 0

 Flash / USB 1 1

Since easyDSP uses two kinds boot modes, SCI boot mode (RAM boot) and flash boot mode. Below

connection is recommended between easyDSP and MCU.

Note 1) GPIO28/29 should be used for SCIA

Note 2) factory default is assummed. Otherwise, the user should modify the configuration

accordingly.

You need to use three easyDSP pods to communicate with CPU1, CPU2 and CM all.

The easyDSP connected to CPU1 should use SCI-A (GPIO28 and 29 fixed).

easyDSP help

 40

The easyDSP connected to CPU2 can use either SCI-B, SCI-C or SCI-D but easyDSP recommends to

use SCI-B as default in its source file.

The easyDSP connected to CM should use UART. easyDSP uses GPIO84/85 in its source file.

In case you uses another GPIO pins for CPU2 and CM, the hardware connection and easyDSP source

file (easyDSP_SCI_Init function in the file of easy28x_DriverLib.c or easy28x_bitfield.c) should be

modified accordingly by yourself.

- Factory default setting is assumed (Don't change it)

- Power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- TX/RX pins are directly connected to MCU pins

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec.

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

- /BOOT pin is connected to GPIO72 via 2kΩ series resistor

- /RESET pin is connected to reset generation circuit of MCU board

 (Time duration of /RESET pin is around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

7.1.2.3 F2837xS/2807x
Both piccolo series TMS320F2807x and defino series TMS320F2837xS check below three pins at the

reset to decide the booting mode.

 MODE GPIO72 GPIO84 /TRST Boot mode

 Mode EMU X X 1 Emulation Boot

 Mode 0 0 0 0 Parallel I/O

 Mode 1 0 1 0 SCI (RAM boot)

 Mode 2 1 0 0 Wait Boot Mode

 Mode 3 1 1 0 Get Mode (factory default = boot to flash)

easyDSP uses two kinds boot mode. SCI boot mode for RAM booting, GetMode boot mode for flash rom

booting.

Below connection is recommended between easyDSP and MCU.

- Factory default setting is assumed

easyDSP help

 41

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- connect SCIRXDA = GPIO85, SCITXDA = GPIO84

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec

- TX/RX pins are directly connected to MCU pins

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

- /BOOT pin is connected to GPIO72 via 2kΩ series resistor

- /RESET pin is connected to reset generation circuit of MCU board

 (Time duration of /RESET pin is around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

7.1.2.4 F2837xD
Defino series TMS320F2837xD check below three pins at the reset to decide the booting mode.

 MODE GPIO72 GPIO84 /TRST Boot mode

 Mode EMU X X 1 Emulation Boot

 Mode 0 0 0 0 Parallel I/O

 Mode 1 0 1 0 SCI (RAM boot)

 Mode 2 1 0 0 Wait Boot Mode

 Mode 3 1 1 0 Get Mode (factory default = boot to flash)

easyDSP uses two kinds boot mode. SCI boot mode for RAM booting, GetMode boot mode for flash rom

booting.

Below connection is recommended between easyDSP and MCU.

Note that GPIO84/85 should be used for SCIA. Please check 'How to use different port ?' session in

case external memory interface is necessary.

easyDSP help

 42

You need to use two easyDSP pods to communicate with both CPU1 and CPU2.

one easyDSP connected to CPU1 should use SCI-A (GPIO84/85 fixed).

The other easyDSP connected to CPU2 can use either SCI-B, SCI-C or SCI-D but easyDSP recommends

to use SCI-B GPIO 87/86 as default in its source file (easy28x_DriverLib.c or easy28x_bitfield.c) .

If another GPIO port is required in your system, please change the hardware connection and modify

the easyDSP source file (in the function of easyDSP_SCI_Init) accordingly by yourself.

- Factory default setting is assumed (Don't change it)

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- TX/RX pins are directly connected to MCU pins

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

- /BOOT pin is connected to GPIO72 via 2kΩ series resistor

- /RESET pin is connected to reset generation circuit of MCU board

 (Time duration of /RESET pin is around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

7.1.2.5 F28P55x/F28001x/28002x/28003x/28004x
Under factory default (OTP_BOOTPIN_CONFIG_KEY != 0x5A) and no emulator connected, MCU checks

below two pins at reset to determine the booting mode.

 MODE GPIO24 GPIO32 Boot mode

 Mode 0 0 0 Parallel I/O

 Mode 1 0 1 SCI / Wait (RAM boot)

easyDSP help

 43

 Mode 2 1 0 CAN

 Mode 3 1 1 Flash (USB)

easyDSP uses two kinds boot mode, SCI boot mode for RAM booting, Flash boot mode for flash rom

booting.

Therefore, below connection is recommended between easyDSP and MCU.

- Factory default setting is assumed

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- SCIA_RX = GPIO28, SCIA_TX = GPIO29

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec

- TX/RX pins are directly connected to MCU pins

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

- /BOOT pin is connected to GPIO24 via 2kΩ series resistor

- /RESET pin is connected to reset generation circuit of MCU board (Time duration of /RESET pin is

around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

7.1.2.6 F2823x/2833x

Boot mode of TMS320F2823x/2833x at reset is decided based on the pin status of four pins.

MODE
GPIO87

XA15

GPIO86

XA14

GPIO85

XA13

GPIO84

XA12
Boot mode

F 1 1 1 1 Jump to Flash

E 1 1 1 0 SCI-A boot (RAM boot)

D 1 1 0 1 SPI-A boot

easyDSP help

 44

C 1 1 0 0 I2C-A boot

B 1 0 1 1 eCAN-A boot

A 1 0 1 0 McBSP-A boot

9 1 0 0 1 Jump to XINTF x16

8 1 0 0 0 Jump to XINTF x32

7 0 1 1 1 Jump to OTP

6 0 1 1 0 Parallel GPIO I/O boot

5 0 1 0 1 Parallel XINTF boot

4 0 1 0 0 Jump to SARAM

3 0 0 1 1 Branch to check boot mode

2 0 0 1 0 Branch to Flash, skip ADC calibration

1 0 0 0 1 Branch to SARAM, skip ADC calibration

0 0 0 0 0 Branch to SCI, skip ADC calibration

easyDSP activates both /BOOT and /RESET pins low for RAM booting. It activates only /RESET pin low

for the menu 'DSP>Reset DSP'.

An easyDSP uses either ‘Jump to Flash’ mode or ‘SCI-A boot’ by setting GPIO84 pin as 1 or 0 while

other three pins are fixed to 1. Therefore below circuit configuration is recommended.

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- TX/RX pins are directly connected to MCU pins

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

- /BOOT pin is connected to either GPIO84 or GPIO85 via 2kΩ resistor

- /RESET pin is connected to reset generation circuit of MCU board

 (Time duration of /Reset pin is around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

easyDSP help

 45

7.1.2.7 C2834x

TMS320C2834x checks below four pins at the reset to decide the booting mode.

MODE
GPIO87

XA15

GPIO86

XA14

GPIO85

XA13

GPIO84

XA12
 Booting mode

E 1 1 1 0 SCI-A boot (for RAM booting)

D 1 1 0 1 SPI-A boot (for flashrom booting)

easyDSP activates both /BOOT and /RESET pins low for RAM booting. And it activates only /RESET pin

low for the menu 'DSP>Reset DSP'. So please connect easyDSP as below so that easyDSP can select

appropriate RAM booting mode (SCI-A).

Blue box of above table is the recommendation for flashrom booting. Hardware preparation is your task.

(SCI-A boot @ RAM booting. SPI-A boot @ flashrom booting)

And please note belows.

- SPI-A is used for easyDSP. You can't use SPI-A for your purpose.

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- TX/RX pins are directly connected to MCU pins

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

- /BOOT pin is connected via 2kΩ series resistor

- /RESET pin is connected to reset generation circuit of MCU board

 (Time duration of /RESET pin is around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

Caution !!
When you select menu 'MCU'>'Reset MCU', only /RESET pin is activated low. /BOOT is still high at that

time.

Therefore don't use this menu if you are not ready to use SPI-A boot mode.

easyDSP help

 46

7.1.2.8 F2802x/2802x0/2803x/2805x/2806x

Piccolo series TMS320F2802x/2802x0/2803x/2805x/2806x checks below three pins at the reset to

decide the booting mode.

 MODE
GPIO37

TDO

GPIO34

CMP2OUT
/TRST Boot mode

 Mode EMU X X 1 Emulation Boot

 Mode 0 0 0 0 Parallel I/O

 Mode 1 0 1 0 SCI (RAM boot)

 Mode 2 1 0 0 Wait

 Mode 3 1 1 0 GetMode

easyDSP uses two kinds boot mode. SCI boot mode for RAM booting, GetMode boot mode for flashrom

booting.

In case there is no emulator connected (that is /TRST=0), fix GIOP34 to '1' and connect /BOOT pin to

GPIO37 as shown below connection.

cf) In case there is emulator connected, boot mode is decided based on the memory value at the

specific address. Please refer to the TI manual for the details.

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- connect SCIRXDA = GPIO28, SCITXDA = GPIO29

- TX/RX pins are directly connected to MCU pins

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

- /BOOT pin is connected to GPIO37 via 2kΩ series resistor

- /RESET pin is connected to reset generation circuit of MCU board

 (Time duration of /RESET pin is around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

easyDSP help

 47

7.1.2.9 F281x

TMS320F281x checks below four pins at the reset to decide the booting mode.

GPIOF4(SCITXDA) GPIOF12(MDXA) GPIOF3(SPISTEA) GPIOF2(SPICLK) Boot mode

1 x x x FLASH(0x3F7FF6)

0 1 x x SPI boot

0 0 1 1 SCI boot (SCI-A)

(RAM boot)

0 0 1 0 H0

SARAM(0x3F8000)

0 0 0 1 OTP (0x3D7800)

easyDSP uses two kinds boot mode. 'SCI' for RAM booting, 'Flash' for flashrom booting (yellow part in

above table). Therefore, fix GPIOF2, GPIOF3 and GPIOF12 to '1', '1' and '0' respectively. And connect

GPIOF4(SCITXDA) to /BOOT pin of easyDSP, as shown in below connection.

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- TX/RX pins are directly connected to MCU pins

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

- /BOOT pin is connected to SCITXDA via 2kΩ series resistor

- /RESET pin is connected to reset generation circuit of MCU board

 (Time duration of /RESET pin is around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

7.1.2.10 F280x

easyDSP help

 48

TMS320F280x checks below four pins at the reset to decide the booting mode.

 Boot mode

GPIO18

SPICLKA

SCITXB

GPIO29

SCITXDA
GPIO34

 Jump to Flash 0x3F 7FF6 1 1 1

 Call SCI-A boot loader

 (RAM boot)
1 1 0

 Call SPI-A boot loader 1 0 1

 Call I2C-A boot loader 1 0 0

 Call eCAN-A boot loader 0 1 1

 Jump to M0 SARAM 0x00 0000 0 1 0

 Jump to OPT 0 0 1

 Parallel GPIO Loader 0 0 0

easyDSP uses two kinds boot mode. 'SCI-A' for RAM booting, 'Jump to Flash' for flashrom booting

(yellow part in above table). Therefore, fix GPIO18, GPIO29 to '1'. And connect GPIO34 to /BOOT pin

of easyDSP, as shown in below connection.

- power pin (#4) of easyDSP 5x2 header should be connected to 3.3V

- TX/RX pins are directly connected to MCU pins

- In case there is a reset IC between easyDSP /RESET and MCU /XRS, it should transfer easyDSP

/RESET signal to MCU /XRS within 0.5sec

- In case you insert buffer IC between easyDSP header and MCU, place buffer IC directly to easyDSP

header so that all resistors can be connected to directly MCU

- /BOOT pin is connected to GPIO34 via 2kΩ series resistor

- /RESET pin is connected to reset generation circuit of MCU board

 (Time duration of /RESET pin is around 500msec)

- In case you use pull-up resistor to each pin, the value of pull-up resistor should be higher than a few

kilo ohm since there is 100Ω series resistor inside easyDSP pod

Please be careful when you use your own pull-up or pull-down resistor on the easyDSP signal pins.

Please use appropriate filter circuit to your reset generation circuit to prevent unintentional reset

generation.

easyDSP help

 49

7.1.3 How to use other SCI port than designated

If you use different ports for easyDSP than recommended in previous section, you can do monitoring

operation but can't do RAM booting and flash programming since MCU has dedicated port for its

SCI booting. In case you really need to use different port, you can try below method. Here

TMS320F28377D is taken as an example but the other MCU can be used in similar way.

How to use the other ports than GPIO85 and GPIO84 with TMS320F28377D for

EMIF :

First step, SCI booting done by GPIO85/GPIO84 and later monitoring done by the other GPIOs. To do

so, additional hardware is necessary to switch easyDSP connection from GPIO85/GPIO84 to the other

GPIOs right after booting completion. Please refer to below circuit whereDual SPDT (NLAS4684 from

Onsemi,TS3A24159 from TI) is used. FPGA can be used too.

http://www.onsemi.com/pub_link/Collateral/NLAS4684-D.PDF

http://www.ti.com/lit/ds/symlink/ts3a24159.pdf

To switch easyDSP connection, one more GPIO (here, GPIOx) is used. You can use any GPIO which you

don't use in your application. The operation mechanism as below.

- After reset, GPIOx is input pin as reset default. The pull-up resistor on GPIOx decides SPDT

connection, which makes easyDSP connected to GPIO85/84.- Once SCI booting is completed, it's

user's task to switch easyDSP connection to the other ports. You can do as below.

- Makes GPIOx as output port and set its value to low, which makes easyDSP connection to GPIO28/29.

http://www.onsemi.com/pub_link/Collateral/NLAS4684-D.PDF
http://www.ti.com/lit/ds/symlink/ts3a24159.pdf

easyDSP help

 50

- The above operation can be done ineasyDSP_SCI_Init() in CPU1.

- Please change original coding as recommended below.

 ///

 // ORIGINAL CODING : SCI-A GPIO setting : SCIRXDA = GPIO 85, SCITXDA = GPIO84

 ///

 GPIO_SetupPinMux(84, GPIO_MUX_CPU1, 5);

 GPIO_SetupPinMux(85, GPIO_MUX_CPU1, 5);

 GPIO_SetupPinOptions(84, GPIO_OUTPUT, GPIO_ASYNC);

 GPIO_SetupPinOptions(85, GPIO_INPUT, GPIO_ASYNC);

 EALLOW;

 GpioCtrlRegs.GPCPUD.bit.GPIO85 = 0;

 GpioCtrlRegs.GPCPUD.bit.GPIO84 = 0;

 EDIS;

 //

 // MODIFIED CODING : SCI-A GPIO setting : SCIRXDA = GPIO 28, SCITXDA = GPIO29

 //

 GPIO_SetupPinMux(29, GPIO_MUX_CPU1, 1);

 GPIO_SetupPinMux(28, GPIO_MUX_CPU1, 1);

 GPIO_SetupPinOptions(29, GPIO_OUTPUT, GPIO_ASYNC);

 GPIO_SetupPinOptions(28, GPIO_INPUT, GPIO_ASYNC);

 EALLOW;

 GpioCtrlRegs.GPCPUD.bit.GPIO28 = 0;

 GpioCtrlRegs.GPCPUD.bit.GPIO29 = 0;

 EDIS;

 // easyDSP connected to GPIO28/29 by using GPIO31

 GPIO_SetupPinMux(31, GPIO_MUX_CPU1, 0);

 GPIO_SetupPinOptions(31, GPIO_OUTPUT, GPIO_PUSHPULL);

 GPIO_WritePin(31, 0);

/BOOT pin of easyDSP pod has pseudo open collector type, which means it becomes low during booting

for flash programming or RAM booting but open after booting. So, no addtional measures are required

when using GPIO72 as EMIF. But please note that easyDSP pod connection or disconnection during

MCU operation is not recommended since it could make a unintended noise signal to GPIO72.

Using Get mode helps ? :

easyDSP help

 51

You might think to try Get mode since you can use SCI BOOT 1 in Get Mode after changing Zx-

BOOTCTRL register. Since Zx-BOOTCTRL register is located in OTP area, you can not change its contens twice.

Also you can not use flash booting.

7.1.4 C28x cautions

* F ail to boot with big coding size ?

It could happen likely with TMS320C2834x series since its code size is normally much bigger than that

of other MCU series. Why? It's because it takes long long time to initialize variables in c_int00 routine

and therefore after some time watch-dog makes unintentional reset to MCU. To prevent watch-dog

reset during c_int00 routine operation, it is strongly recommended the entry point is set to the

'code_start' label (in TI's DSP28x_CodeStartBranch.asm) with watch-dog disabled. This is done by

linker option -e in the project build options, that is, -ecode_start.

* Operating XDS100 together with easyDSP ?

XDS100v1 (TI or 3rd parties emulator) supports multiple FTDI devices only for CCS v4. Therefore

when you use XDS100v1 with CCS v3.3, easyDSP can’t be used together.

* If you use other SCI ports than easyDSP recommends to use ?

For example, easyDSP recommends to use GPIO28, 29 for SCIRXDA and SCITXDA respectively when

SCI-communicating with F28335. If you use GPIO36 and GPIO35 instead, you will face the booting

failure. It's because TI does not support serial booting via these pins (GPIO36 and 35).

* What if MCU is at the reset during easyDSP communication ?

It depends. If the boot mode after the reset is flashrom booting, then the MCU will boot again with the

flashrom. If the boot mode after the reset is RAM booting, then MCU will boot with the serial data

which easyDSP send for communication. It finally causes fatal error and can damage your system.

7.2 STM32

7.2.1 STM32 programming

STEP 1 : Selection of USART channel and its configuration

It will be explained based on STM32CubeMX.

Steps STM32CubeMX

easyDSP help

 52

Select USART

channel to be

connected to

easyDSP. UART

channel is not

usable. Please

refer to 'STM32

hardware >

STEP1' in this help

file.

In this example, USART1 is selected.

Go to the

selected USART

in the

'connectivity' tab.

Then set the

mode with

Asynchronous.

easyDSP help

 53

Set the

communication

with 8 bits, no

parity, 1 stop

bit .

Baud rate is

selectable.

If MCU supports

FIFO with 8

levels or more in

USART, please

enable it and set

'Rxfifo Threshold'

to '1 eight full

configuration'.

Note that

easyStmLL.c

version 10.5 or

lager is

required. .

Enable interrupt

Go to 'system Core

> NVIC' tab and

set the priority of

USART interrupt

lowest. That is, the

highest number of

priority.

Go to ' System

Core > GPIO >

USART' tab, set the

GPIO pin status

with Pull-up.

easyDSP help

 54

Go to 'Project

Manager >

Advanced Settings

> Driver Selector'

tab and choose

LL . easyDSP

supports only LL

based source file.

STEP 2 : USART interrupt service routine based on LL

Thanks to smaller resource consumption than HAL, Only LL based easyDSP communication is

supported.

For easyDSP to communicate with MCU via USART, source file for USART ISR (Interrupt Service

Routine) should be included in your project.

Below is the source code based on LL and it's located in the folder 'Source > STM32' in the installed

easyDSP.

easyStm32LL_v11.4.c

easyStm32LL_v11.4.h

Please check below step by step procedure to modify your application code.

For the additional settings for dual core MCU, please refer to this page.

steps source code example

Define target MCU as 1 in

the easyStm32LL.h file.

No change to

easyStm32LL.c file.

In this example, target MCU is STM32G0xx.

easyDSP help

 55

In the beginning of

main.c, include

easyStm32LL_vx.y.h

where x.y is version.

After calling

MX_USARTx_UART_Init(),

call

easyDSP_init(USARTz)

z = selected USART

channel. In this example

USART1 is used.

In the beginning of

stm32xxx_it.c file where

ISR is defined, include

easyStm32LL.h.

call

ez_USARTx_IRQHandler()

in the selected USART

IRQ handler function.

In this example, the ISR file is stm32g0xx_it.c.

STEP 3 : Dual core

The code of each CPU should be located in the different page of flash.

STEP 4 : IDE setting

1. Hex file (intel format) is used for ram booting and flash programming. So it should exist and be

created in every compiling time in the same folder to output file (ex *.elf) with same file name. The

hex file extension could be either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex'

exists and use it for flash programming and ram booting. If the hex file with extension 'hex' doesn't

exist, easyDSP uses the hex file with extension 'ihex'. Please set your IDE to create hex file in every

compilation accordingly.

Example of STM32CubeIDE :

easyDSP help

 56

2. For easyDSP to access the variable, the debug information should be included in the output file (ex,

*.elf). And the option of assembler, compiler and linker should be set accordingly (for example, -g

option). The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded. As an example with Stm32CubeIde, uncheck the 'Discard unused sections'

box.

Example of STM32CubeIDE :

easyDSP help

 57

]

easyDSP help

 58

Example of KEIL uVision :

Example of IAR Embedded Workbench :

easyDSP help

 59

7.2.2 STM32 hardware

STEP 1 : Selection of USART channel and its pins for boot mode
operation

easyDSP uses USART communication to interface with MCU and also for flash programming under

bootloader. So, first step should be choosing proper USART channel and its pins.

Please check ST's application note (AN2606 : STM32 microcontroller system memory boot mode) and

choose USART channel and its pins on your needs. UART channel is not usable.

(Note : as of Apr 2025, no information about STM32WL3x in the AN2606. Please use USART1 Rx

(PA15) and USART1 Tx (PA1) for QFN48 package or USART1 Rx (PB14) and USART1 Tx (PA1) for

QFN32 package)

Note that USART channel should be supported by bootloader. For example, in case of STM32F413x,

check the table below.

If you choose USART2, then you should usePD5 and PD6 pin.

https://www.st.com/content/ccc/resource/technical/document/application_note/b9/9b/16/3a/12/1e/40/0c/CD00167594.pdf/files/CD00167594.pdf/jcr:content/translations/en.CD00167594.pdf

easyDSP help

 60

Accrodingly set the PD5 and PD6 as USART2 in the STM32CubeMX.

Caution-1 : Below MCU-USART-Pin combination is not recommended due to its restriction.

MCU USART Pin Limitation

STM32F03xx4/6 USART1 PA14

PA15

SWD not available during bootloader

operation because PA14(SW_CLK) is

used by bootloader.
STM32F030xC

STM32F05xxx

STM32F030x8

STM32F04xxx

STM32F070x6

STM32F070xB

STM32F071xx

STM32F072xx

STM32F09xxx

USART2 PA14

PA15

SWD not available during bootloader

operation because PA14(SW_CLK) is

used by bootloader.

Caution 2 : Due to bugs in the bootloader (esp. with old version), please don't use below MUC-BL ID-

USART combinations.

 Please check AN2606 for its details.

 Please note that the other combination than this could be not working due to undocumented

bugs.

MCU BL ID USART

STM32F105xx/107xx V2.0 (0x20) USART1,USART2

STM32F412xx V9.0 (0x90) USART3

STM32G05xxx/061xx V5.0 (0x50) USART2

STM32H74xxx

STM32H75xxx
V13.2 (0xD2) USART2

STM32L552xx

STM32L562xx
V13.0 (0xD0) USART3

 STM32L47xxx/48xxx V9.2 (0x92) USART2
 STM32L496xx/4A6xx V9.3 (0x93) USART2, USART3
 STM32L4P5xx/Q5xx V9.0 (0x90) USART2, USART3
 STM32L4Rxx/4Sxx V9.2 (0x92) USART2, USART3
 STM32L4RxG/4SxG V9.2 (0x92) all USARTx

STEP 2 : easyDSP pod connection

Connect easyDSP pod to the USARTx selected in step 1.

In case of STM32F1, STM32F4 and STM32L1, pulldown to BOOT1 pin.

easyDSP pod VDD pin is connected to MCU VDD pin.

easyDSP pod TX and RX pin is pulled up with 100k Ohm resistor inside of easyDSP pod.

easyDSP help

 61

In case there is a reset IC between easyDSP /RESET and MCU NRST, it should transfer easyDSP

/RESET signal to MCU within 0.5sec.

Note)

STM32WB0 and STM32WL33xx : PA10 pin is BOOT0 pin.

STM32H74xxx/75xxx : don't pulldown PB15 pin.

STM32G03xx/04xxx : don't pulldown PA3 pin if the version of bootloader is either v5.1 or v5.2.

STM32C011xx : On WLCSP12, SO8N, TSSOP20 and UFQFN20 packages, USART1 PA9/PA10 IOs are

remapped on PA11/PA12.

STM32C031xx : On TSSOP20 and UFQFN28 packages, USART1 PA9/PA10 IOs are remapped on

PA11/PA12.

STEP 3 : MCU option byte

The option byte of MCU should be set properly before using easyDSP. Since easyDSP can't change it,

It's your task to change option byte by using Stm32CubeProgrammer.

For easyDSP to access the memory, no protection or security should be active such as

- RDP (Readout Protect)

- WRP (Write Protect)

- PCROP (Proprietary code read-out protection)

- Securable memory

easyDSP contols BOOT0 pin to determine MCU boot mode after reset, either boot from flash

(BOOT0 pin low) or boot from system memory (BOOT0 pin high). Option bytes in the MCU

should be set accordingly.

Below captures from Stm32CubeProgrammer could be different slightly depending MCU type.

- BOOT_LOCK should be not used so that easyDSP can use bootloader : BOOT_LOCK = unchecked

- If MCU has product state, it should be OPEN for flash programming.

easyDSP help

 62

- NRST pin should be reset input pin : NSRT_MODE = 1 or 3

- Boot mode should be determined by BOOT0 pin which is controlled by easyDSP : nBOOL_SEL =

unchecked, BOOT_SEL = checked, nBOOT1 = checked, nSWBOOT0 = checked

- If different boot areas can be selected through the BOOT pin and the boot base address programmed

in the BOOT_ADD0 and

BOOT_ADD1 option bytes, the BOOT_ADD0 and BOOT_ADD! should be the address of flash and

system memory respectively.

 For ex, in case of STM32H7A3,

 in case of STM32F767

- In case of STM32H7 dual core MCU, both cores are boot-enabled.

 In case of STM32WL dual core :

7.2.3 STM32 dual core

Target MCU

STM32H745x, STM32H747x, STM32H755x, STM32H757x (CPU1 = Arm Cortex-M7, CPU2 = Arm

Cortex-M4)

STM32WL55xx, STM32WL54xx (CPU1 = Arm Cortex-M4, CPU2 = Arm Cortex-M0+)

Common

easyDSP help

 63

MCU cores are classified with 4 kinds in terms of easyDSP.

Yellow core : core that easyDSP pod is connected to and easyDSP communicates with

Orange core : core that easyDSP pod is not connected to but easyDSP communicates with

Blue core : core that easyDSP doesn't communicate with

Gray core : core that doesn't run

STM32 dual core MCU has 2 cores. Please choose core type either yellow or orange core based on your

application.

Since blue and gray core has no operation with easyDSP, no easyDSP related setting is required for

them.

In the project settings, you can designate the output file of the running cores. If two cores are running

in the user program, two output files can be specified. These output files are used when flash

programming.

Also check the core which easyDSP is communicating with (monitoring).

Below example shows the case that two cores are running (and therefore easyDSP supports flash

programming of two cores) and easyDSP is monitoring only CPU1.

When easyDSP monitors two cores CPU1 and CPU2, to devide the variable name of each

core, easyDSP adds prefix to the original name, "1:" to CPU1 variables, "2:" to CPU2 variables.

For example, if the name of variable is "var1" in your CPU1 program, easyDSP displays it as "1:var1".

STM32WL dual core

easyDSP offers two options as below. The arrow in the picture means the data flow between easyDSP

and CPU.

easyDSP project should be created for all the yellow cores.

easyDSP help

 64

Case 1 :

Each CPU has a own connection to easyDSP pod. For each CPU, please set accordingly to what is

described in the previous pages .

If you register optional output file, each easyDSP project can flash for both CPU1 and CPU2. If not,

each easyDSP project can flash only one CPU.

 Settings CPU1 CPU2

easyDSP

project

register CPU1 output file

regieter CPU2 output file (optional)

check CPU1 check box

register CPU2 output file

regieter CPU1 output file (optional)

check CPU2 check box

 main.c call easyDSP_init(USARTn) call easyDSP_init(USARTm)

 stm32h7xx_it.c
call USARTx_IRQHandler() in

the ez_USARTx_IRQHandler()

call USARTx_IRQHandler() in the

ez_USARTx_IRQHandler()

Case 2 :

easyDSP is connected to CPU1 and makes an access to all the memory via CPU1. CPU2 can't be used

for this purpose.

Therefore like single core MCU, easyDSP related settings are same to what is described in the previous

pages . There is no easyDSP related setting to CPU2.

 Settings CPU1

easyDSP

project

register CPU1 and CPU2 output files

check CPU1 and CPU2 check boxes

easyDSP help

 65

 main.c call easyDSP_init(USARTn)

 stm32h7xx_it.c
call USARTx_IRQHandler() in

the ez_USARTx_IRQHandler()

STM32H7 dual core

Depending on data cache usage (Stm32CubeMx > System Core > CORTEX_M7 > Parameter Settings >

Cortex Interface Settings > CPU DCache), easyDSP offers three different connections.

The arrow in the picture means the data flow between easyDSP and CPU.

Case 1 :

Each CPU has a connection to easyDSP. This configuration can be used independent of data chache

usage.

For each CPU, please set accordingly to what is described in the previous pages .

If you register optional output file, each easyDSP project can flash for both CPU1 and CPU2. If not,

each easyDSP project can flash only one CPU.

 Settings CPU1 CPU2

easyDSP

project

register CPU1 output file

register CPU2 output file (optional)

check CPU1 check box

register CPU2 output file

register CPU1 output file (optional)

check CPU2 check box

 easyStm32LL.h

EZ_DUAL_CORE = 1

EASYDSP_IS_CONNECTED_TO_THIS_CORE =

1

EZ_USE_SEV_INT = 0

EZ_DUAL_CORE = 1

EASYDSP_IS_CONNECTED_TO_THIS_CORE =

1

EZ_USE_SEV_INT = 0

 main.c call easyDSP_init(USARTn) call easyDSP_init(USARTm)

 stm32h7xx_it.c
call USARTx_IRQHandler() in

the ez_USARTx_IRQHandler()

call USARTx_IRQHandler() in

the ez_USARTx_IRQHandler()

easyDSP help

 66

Case 2 :

If data cache is not used, easyDSP can access all the memory via CPU1. CPU2 can't be used for this

purpose. Therefore like single core MCU, easyDSP related settings are same to what is described in the

previous pages .

There is no easyDSP related setting to CPU2.

 Settings CPU1

easyDSP

project

register CPU1 and CPU2 output files

check CPU1 and CPU2 check boxes

 easyStm32LL.h

EZ_DUAL_CORE = 1

EASYDSP_IS_CONNECTED_TO_THIS_CORE = 1

EZ_USE_SEV_INT = 0

 main.c call easyDSP_init(USARTn)

 stm32h7xx_it.c
call USARTx_IRQHandler() in the

ez_USARTx_IRQHandler()

Case 3 :

If data cache is enabled, easyDSP uses SEV interrupt and dedicated shared memory to avoid cache

coherence issue.

easyDSP pod can be connected to either CPU1 or CPU2. Please select the proper CPU for easyDSP pod

connection based on your application.

SEV interrupt should be enabled with the lowest priority in the STM32CubeMx > System Core >

NVIC1 and NVIC2.

easyDSP help

 67

The shared memory could be located anywhere but the location of SRAM4 is recommended. Note that

 1. This memory area (32 bytes from start address) should not be used by both CPU1 and CPU2.

Please take care of linker script file.

 2. The start address should be aligned to 32 bytes. For example, 0x38000000 or 0x38000020

 3. This memory are should be non cacheable. MPU settings are necessary in the Stm32CubeMx >

System Core > CORTEX_M7.

Finally include easyDSP source file to both CPU1 and CPU2 projects and set properly as below table.

 Settings CPUx (easyDSP pod is connected to) CPUy (easyDSP pod is not connected to)

easyDSP project
register CPU1 and CPU2 output files

check CPU1 and CPU2 check boxes
no easyDSP project

 easyStm32LL.h

EZ_DUAL_CORE = 1

EASYDSP_IS_CONNECTED_TO_THIS_COR

E = 1

EZ_USE_SEV_INT = 1

EZ_SHARED_MEM_ADDRESS = user

defined

EZ_DUAL_CORE = 1

EASYDSP_IS_CONNECTED_TO_THIS_COR

E =0

EZ_USE_SEV_INT = 1

EZ_SHARED_MEM_ADDRESS = user

defined

 main.c call easyDSP_init(USARTn) call easyDSP_init(0)

 stm32h7xx_it.

c

call USARTx_IRQHandler() in

the ez_USARTx_IRQHandler()

call CMx_SEV_IRQHandler() in

the ez_SEV_IRQHandler()

call CMx_SEV_IRQHandler() in

the ez_SEV_IRQHandler()

easyDSP help

 68

7.2.4 STM32 RAM booting

You can skip this page if you don't use RAM booting.

easyDSP is supporting RAM booting using boot loader of MCU.

Therefore, all the differences from RAM booting with debugger comes from bootloader.

Please note that ram booting using boot loader has some limitation such as limited RAM area and some

bugs in boot loader.

Please refer to below guideline for its implementation.

Steps Example or further explanation

1. Limitations

1. Below MCU can't support RAM booting.

 STM32F04xxx

 STM32F070x6

 STM32L01xxx/02xxx

 STM32L031xx/041xx

2. If bootloader of MCU is not the latest one, RAM booting is blocked. Please check

the MCU and bootloader version in the table. If the latest bootloader is in the MCU, no

limitation. For its details, please check the latest version of AN2606 (STM32

microcontroller system memory boot mode).

MCU Bootloader version

STM32H74xxx

STM32H75xxx
V13.2 (0xD2)

STM32L552xx

STM32L562xx
V13.0 (0xD0)

STM32L47xxx

STM32L48xxx
V10.1 (0xA1)

V9.0 (0x90)

STM32F100xx

STM32F101xx

STM32F102xx

STM32F103xx

(except STM32F101xF,

STM32F101xG, STM32F103xF,

STM32F103xG)

V2.0 (0x20)

3. no RAM booting supported for dual core MCU (H745, H747, H755, H757, WL5x)

easyDSP help

 69

2. Modification

of RAM

memory map

in the linker

script file

User code

can't reside in

the RAM area

which MCU

bootloader is

using.

Also there is a

memory area

which is not

accessible in

the bootload

mode.

So, linker

script file

should be

modified so

that user

code reside in

the RAM

properly.

Please check

the RAM area

usable for RAM

booting in the

latest

AN2606(STM3

2

microcontroller

system

memory boot

mode) .

This example is based on STM32F413.

In STM32F413ZHTX_RAM.ld file, RAM area is defined as below.

But first 12k byte is used by bootloader and user code can't use this area.

Therefore please modify RAM area to start from 0x20003000.

3. Locate ISR

vector table in

the first

address of

RAM memory

For RAM booting, easyDSP assumes ISR vector table is located in the first address of

RAM memory.

So, the vector table should be located in the first address of RAM memory. In case of

Stm32CubeIde, this condition is met by placing .isr_vector in the first part of

SECTIONS. Since this is default feature of linker script file Stm32CubeIde generates,

you don't need to do any additional job if you use Stm32CubeIde.

In case you use another Ide, please make sure this condition is implemented.

easyDSP help

 70

4. register the

modified linker

script file in

the linker

option.

5. Change of

vector table

address

Again, this example is based on STM32F413.

system_stm32f4xx.c BEFORE change :

VECT_TAB_OFFSET is defined as 0x00 for flashrom booting.

system_stm32f4xx.c AFTER change :

Since the user code starts from 0x20003000, VECT_TAB_OFFSET should be changed

to 0x3000.

Please define VECT_TAB_SRAM and set the VECT_TAB_OFFSET to 0x3000.

Note) you need to define USER_VECT_TAB_ADDRESS in some MCU cases (ex,

STM32L5, STM32U3)

Below is the recommendation. You can easily switch between RAM booting and flash

booting by defining VECT_TAB_SRAM or not respectively.

You might need to consider further for the specific MCU. Please check "Miscellaneous

Configuration" part of system_stm32yyxx.c file.

easyDSP help

 71

6. Others

Depending on the MCU and its bootloader version, further consideration is necessary :

case1 : Bootlader version 9.0 with STM32H74x/H75x

 stack pointer in the STM32H743ZITX_RAM.ld file as shown below

 should be changed to below by adding -16.

case 2 : STM32WB55

 Below three lines should be inserted at the end of STM32WB55RGVX_RAM.ld file.

 MAPPING_TABLE (NOLOAD) : { *(MAPPING_TABLE) } >RAM_SHARED

 MB_MEM1 (NOLOAD) : { *(MB_MEM1) } >RAM_SHARED

 MB_MEM2 (NOLOAD) : { _sMB_MEM2 = . ; *(MB_MEM2) ; _eMB_MEM2

= . ; } < /FONT >

case 3 :STM32WBA

 stack pointer in the STM32WBA52CGUX_RAM.ld file as shown below

 _estack = ORIGIN(RAM) + LENGTH(RAM);

 should be changed to below by adding -16.

 _estack = ORIGIN(RAM) + LENGTH(RAM) - 16;

7.2.5 STM32 cautions

Some communication IO pins are set to output pin during bootloader

operation

Sometimes MCU enters into bootloader operation. For example, RAM booting and flash operation of

easyDSP are executed in the bootloader operation of MCU. Some MCU enters bootloader after reset if

the flash of MCU is empty.

Special care should be taken for your board design considering that some communication IO pins are

set as output pin during bootloader operation. You can identify these pins with ST's application note

(AN2606 : STM32 microcontroller system memory boot mode). In your board design, there should be

no damage even under bootloader operation which sets some IO pins the output. For example, if these

IO pins are connected to directly VDD or GND, the damage could be caused.

Full rebuild of STM32CubeIDE

STM32CubeIDE requests full rebuild if the project setting has a major change. In this case, all files in

the compiler's output folder will be deleted. If your easyDSP project is located in the compiler's output

folder, all easyDSP files also will be deleted.

https://www.st.com/content/ccc/resource/technical/document/application_note/b9/9b/16/3a/12/1e/40/0c/CD00167594.pdf/files/CD00167594.pdf/jcr:content/translations/en.CD00167594.pdf

easyDSP help

 72

USART baud rate

If the allowable resource for USART interrupt is limited, high baud rate could make overrun error.

Bank mode in the MCU name

In case of some STM32 MCU, single or dual bank is specified in the MCU name only when bank mode

should be specified. That is, there is no bank mode in the STM32 MCU name either when bank mode is

fixed (single or dual) in the MCU or when there is no need for understanding bank mode for easyDSP

operation.

7.3 S32

7.3.1 S32K1 + SDK

This page assumes that the user uses S32 Configuration Tools and S32K1 SDK API.

STEP 1 : Hardware

Please select the UART channel and pins according to your board. No constraints to selectable channel

and pin.

Then connect them to easyDSP like below.

In case flash programming is not used, no need to connect /BOOT and /RESET pins.

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU /RESET, it should transfer the signal

within 0.5sec.

- TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP pod.

easyDSP help

 73

STEP 2 : S32 Configuration Tools

As explained in STEP1, please select the UART channel and pins. And set the configuration tool (Pins

tab) accordingly.

Also kindly set the identifier as 'EZ_TX' and 'EZ_RX' respectively for TX and RX pins.

In below example, PTA2 and PTA3 are chosen as RX and TX respectively with LPUART0.

Also set the pin properties as shown in Rounting Details tab. Note that pull-up should be set.

And add the lpuart module in the Drivers.

And set the module properties. Its name should be set same to below. The UART channel is set

as STEP2. In this example, it is set as LPUART0 as same as STEP2.

Also set communication properties as shown. The baudrate should be same one to one in the easyDSP

project setting.

easyDSP help

 74

Also make sure the clock to the UART channel is set properly and enabled. Please refer to below

example.

So far, the setting is for the communication with easyDSP for monitoring variables.

If you like to use the easyDSP bootloader for flash programming, the following process is also required

because easyDSP bootloader uses flash driver. Please add flash component in the Drivers and change

the names as shown below.

easyDSP help

 75

 STEP 3 : Source code correction for easyDSP bootloader

Please skip this step if you don't program flash with easyDSP.

You can find the source file flash_driver.c which is generated by Configuration Tool in the below

location. easyDSP uses two functions. To make them run in the ram, first declare them as in the red

box in the beginning of the file,

then add the macro like below at the location of function definition in the middle of the file.

easyDSP help

 76

In case the Configuration Tool detects the correction of this file and ask like below, please choose

'Keep existing'.

STEP 4 : Calling easyDSP functions

Three files are provided for easyDSP communication and flash programming (easyS32K1_SDK.h,

easyS32K1_SDK_comm.c and easyS32K1_SDK_boot.c). Please include them in your project. You can

find them in the easyDSP installation folder (\source\S32).

In case you use the easyDSP bootloader to program flash, define EZ_BOOTLOADER_USE as 1 in the

easyS32K1_SDK.h file. In case you don't use the easyDSP bootloader for flash programming, define

BOOTLOADER_USE as 0.

Please include easyS32K1_SDK.h in the main.c. And in the main(), call easyDSP_init() after the

initialization of MCU.

In the easyDSP_init() function, all necessary setting for easyDSP monitoring are done.

easyDSP help

 77

In case you use easyDSP for flash programming, call easyDSP_boot() after setting of clock and pins.

STEP 5 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder of output file (for example, *.elf) with same file name. The hex file extension

could be either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it

for flash programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with

extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time. Please refer

to the setting of S32DS below.

easyDSP help

 78

2. For easyDSP monitoring, the debug information should be included in the output file (for example,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded. For example, in S32DS, no check in the check box in the linker option.

STEP 6 : Limitation of easyDSP bootloader

1. To program flash, the bootloader should be provided since there is no ROM bootloader in this MCU.

The bootloader easyDSP provides is the function (name : easyDSP_boot) and it resides in the user

program. Therefore it can program flash only when it is already programmed in the flash. In case flash

is empty or flash doesn't have easyDSP bootloader, you can't enter into the bootloader and will see the

message below. In this case, you have to use the debugger to program flash. And in same principle,

you have to use debugger to program easyDSP bootloader into flash at the beginning.

easyDSP help

 79

2. easyDSP bootloader runs on RAM and it uses about 1.25kB RAM memory space (for -O1

optimization option).

7.3.2 S32K/S32M + RTD

It is assumed that the user uses S32 Configuration Tools and RTD (Real-Time Drivers).

STEP 1 : Hardware

Please select the UART channel and pins according to your board.

No constraints to selectable channel and pin except LPUART1 is not usable for S32M.

Then connect them to easyDSP like below.

In case flash programming is not used, no need to connect /BOOT and /RESET pins.

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU /RESET, it should transfer the signal

within 0.5sec.

- TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP pod.

STEP 2 : S32 Configuration Tools for easyDSP monitoring

As explained in STEP1, please select the UART channel and pins. And set the configuration tool (Pins

tab) accordingly.

Also kindly set the identifier as 'EZ_TX' and 'EZ_RX' respectively for TX and RX pins.

In below example, PTA2 and PTA3 are chosen as RX and TX respectively with LPUART0.

Also set the pin properties as shown in Rounting Details tab. Note that pull-up should be set.

easyDSP help

 80

And add the Lpuart_Uart and IntCtrl_Ip module in the Drivers. If they exist, no need to add again.

And set the Lpuart_Uart module properties.

Please enable 'Uart Callback Capability' in the tab 'GeneralConfiguration' and set the name of callback

as 'ez_RxCallBack'.

Also set the various properties in the tab 'UartGlobalConfig'. In this example, LPUART0 is selected as

STEP1 and 2. The baudrate should be same one to one in the easyDSP project setting.

easyDSP help

 81

easyDSP help

 82

And set the IntCtrl_Ip module properties. In the tab 'Interrupt Controller', please enable the interrupt

of target LPUART channel and set its priority lowest (highest value). In the tab 'Generic Interrupt

Setting', set its interrupt handler as 'EZ_LPUART_UART_IP_IRQHandler'. For some MCU, the setting of

these tabs are combined to single tab.

easyDSP help

 83

easyDSP help

 84

Also make sure the clock to the UART channel is set properly and enabled. Please refer to below

example.

easyDSP help

 85

STEP 3-1 : S32 Configuration Tools for easyDSP boot loader of S32K1x

So far until STEP 2, the setting is for the communication with easyDSP for monitoring variables.

If you like to use the easyDSP bootloader for flash programming of S32K1x, the following process is

also required because easyDSP bootloader uses flash driver.

Please add Ftfc_Ip and Gpio_Dio component in the Drivers.

For Gpio_Dio component, the default setting is ok.

For Ftfc_Ip component, please disable 'Fls Timeout Supervision Enabled' button.

easyDSP help

 86

STEP 3-2 : S32 Configuration Tools for easyDSP boot loader of S32K3x

If you like to use the easyDSP bootloader for flash programming of S32K3x, please add C40_Ip and

Siu2_Dio components in the Drivers.

easyDSP help

 87

For Siu2_Dio component, the default setting is ok.

For C40_Ip component, please disable 'Fls Timeout Supervision Enabled' button.

easyDSP help

 88

STEP 3-3 : S32 Configuration Tools for easyDSP boot loader of S32M24x

If you like to use the easyDSP bootloader for flash programming of S32M24x, please

add Ftfc_Mem_InFls_Ip and Gpio_Dio component in the Drivers.

For Gpio_Dio component, the default setting is ok.

For Ftfc_Mem_InFls_Ip component, the default setting is ok. Please note that you have to disable 'Mem

Timeout Supervision Enabled' button in 'MemGeneral' tab and 'Mem Synchronize Cache' button in

'MemAutosarExt' tab.

STEP 3-4 : S32 Configuration Tools for easyDSP boot loader of S32M27x

easyDSP help

 89

If you like to use the easyDSP bootloader for flash programming of S32M27x, please add C40_Ip and

Siu2_Dio components in the Drivers.

For Siu2_Dio component, the default setting is ok.

For C40_Ip component, the default setting is ok. Please note that you have to disable 'Mem Timeout

Supervision Enabled' button in 'MemGeneral' tab and 'Mem Synchronize Cache' button in

'MemAutosarExt' tab.

STEP 4-1 : Source code correction for easyDSP bootloader of S32K1x

From STEP 3-1, the relavant codes are generated and you can find Ftfc_Fls_Ip.h and Ftfc_Fls_Ip.c files

in the folder RTD>include and RTD>src respectively.

easyDSP bootloader uses these flash API functions and they should run on the ram, not on the flash.

To make these functions run on the ram :

First, in the file Ftfc_Fls_Ip.h, find the location of function declaration, and change like below red boxes.

easyDSP help

 90

Second, in the file Ftfc_Fls_Ip.c, find the location of static function declaration, and change like below

red boxes.

Third, again in the file Ftfc_Fls_Ip.c, find the location of Ftfc_Fls_Ip_SectorErase function definition,

and disable Ftfc_Fls_Ip_SectorErasePreCheck function.

In case the Configuration Tool detects the correction of this file and ask to revert it, don't revert it.

STEP 4-2 : Source code correction for easyDSP bootloader of S32K3x

From STEP 3-2, the relavant codes are generated and you can find C40_Ip.h and C40_Ip.c files in the

folder RTD>include and RTD>src respectively.

easyDSP bootloader uses these flash API functions and they should run on the ram, not on the flash.

To make these functions run on the ram :

First, in the file C40_Ip.h, find the location of function declaration, and change like below red boxes.

easyDSP help

 91

Second, in the file C40_Ip.c, find the location of static function declaration, and change like below red

boxes.

In case the Configuration Tool detects the correction of this file and ask to revert it, don't revert it.

STEP 4-3 : Source code correction for easyDSP bootloader of S32M24x

From STEP 3-1, the relavant codes are generated and you can find Ftfc_Fls_Ip.h and Ftfc_Fls_Ip.c files

in the folder RTD>include and RTD>src respectively.

easyDSP bootloader uses these flash API functions and they should run on the ram, not on the flash.

To make these functions run on the ram :

First, in the file Ftfc_Fls_Ip.h, find the location of function declaration, and change like below red boxes.

STEP 4-4 : Source code correction for easyDSP bootloader of S32M27x

easyDSP help

 92

From STEP 3-2, the relavant codes are generated and you can find C40_Ip.h and C40_Ip.c files in the

folder RTD>include and RTD>src respectively.

easyDSP bootloader uses these flash API functions and they should run on the ram, not on the flash.

To make these functions run on the ram :

First, in the file C40_Ip.h, find the location of function declaration, and change like below red boxes.

STEP 5 : Calling easyDSP functions

Three files are provided for easyDSP communication and flash programming (easyS32_RTD.h,

easyS32_RTD_comm.c, easyS32_RTD_boot.c). Please include them in your project. You can find them

in the easyDSP installation folder (\source\S32).

In the file of easyS32_RTD.h, you should set some macros. First, the target LPUART channel for

easyDSP. In this example below, it is set as LPUART0. Second, i n case you use the easyDSP

bootloader to program flash, define EZ_BOOTLOADER_USE as 1.

Please include easyS32_RTD.h in the main.c. And in the main(), call easyDSP_init() after the

initialization of MCU. In the easyDSP_init() function, all necessary setting for easyDSP monitoring are

done.

Note that the clock, pins and interrupt should be set properly for easyDSP monitoring.

In case you use easyDSP for flash programming, call easyDSP_boot() right after setting of clock and

easyDSP help

 93

pins.

STEP 6 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder of output file (for example, *.elf) with same file name. The hex file extension

could be either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it

for flash programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with

extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time. Please refer

to the setting of S32DS below.

easyDSP help

 94

2. For easyDSP monitoring, the debug information should be included in the output file (for example,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded. For example, in S32DS, no check in the check box in the linker option.

STEP 7 : Limitation of easyDSP bootloader

1. To program flash, the bootloader should be provided since there is no ROM bootloader in this MCU.

The bootloader easyDSP provides is the function (name : easyDSP_boot) and it resides in the user

program. Therefore it can program flash only when it is already programmed in the flash. In case flash

is empty or flash doesn't have easyDSP bootloader, you can't enter into the bootloader and will see the

message below. In this case, you have to use the debugger to program flash. And in same principle,

you have to use debugger to program easyDSP bootloader into flash at the beginning.

easyDSP help

 95

2. easyDSP bootloader runs on RAM and it uses some RAM memory space. It is about 2.4K bytes for

S32K1, 4.8K bytes for S32K3 at the optimization option -O1.

7.4 AM263x

7.4.1 AM263x software

STEP 1 : Core selection

MCU cores are classified with 4 types in terms of easyDSP.

Yellow core : core that easyDSP pod is connected to and easyDSP communicates with

Orange core : core that easyDSP pod is not connected to but easyDSP communicates with

Blue core : core that easyDSP doesn't communicate with

Gray core : core that doesn't run

AM263x has max 4 cores. Please choose core type either yellow or orange core based on your

application. Any core of AM263x could be yellow or orange core.

Since blue and gray core has no operation with easyDSP, no easyDSP related setting is required for

them.

Together with data cache usage, several cases are available as below.

Case 1 :

It is the case that easyDSP monitors multi cores (core a and b) and at least one of them uses data

cache and IPC RPMessage is usable for core to core communication.

easyDSP pod is connected to core a via UART0, the variable of core a is accessed by core a.

To avoid cache coherence issue, the variable (actually its memory location) of core b is accessed by

core b via core to core communication by IPC RPMessage. Please refer to the arrow for data flow

easyDSP help

 96

between easyDSP and cores.

Case 2 :

In the case 1 but IPC RPMessage is not usable, easyDSP pod should be connected to each core.

Case 3 :

It is the case that easyDSP monitors multi cores and data cache is disabled in these cores.

All the variables (and their memory location) are accessed by the core easyDSP pod is connected to.

easyDSP help

 97

Case 4 :

It is the case that easyDSP monitors single core. In this case, we don't care whether the data cache is

enabled or not.

STEP 2 : SysConfig setting

easyDSP uses the code generated by SysConfig. Below figures are made based on SysConfig 1.13.0.

Since easyDSP communicates with MCU via UART0, please disable 'Debug Log > Enable UART Log' or

use another UART than UART0 for it.

easyDSP help

 98

UART related setting is required for all the cores easyDSP pod is connected to, that is, yellow cores.

The name of UART module should be 'EZDSP_UART'. The baudrate is selectable but it should be same

to that of easyDSP project setting. The data format should be 8bit data, one stop bit and no parity bit.

The priority of UART interrupt should be as low as possible such as 15. TX and RX pins are that of

UART0 MUXMODE 0. Exceptionally, UART of core f in STEP1 could be other UART than UART0. Please

check below for details.

IPC setting is required for all the cores using IPC RPMessage (core a and b in STEP1).

'IPC Notify + IPC RP Message' should be used. And 'RP Message Number of Buffers' should be min.1

and 'RP Message Buffer Size' should be min 64. They are increased in case IPC RPMessage is also used

for other purpose than easyDSP. Also no cache should be used for the shared buffer location (memory

16KB from 0x72000000).

easyDSP help

 99

'Supervion RD+WR' is required for the memory area that easyDSP can access so that easyDSP

reads/writes the memory location.

STEP 3 : easyDSP project and MCU project

According to STEP1, easyDSP project should be generated to all the yellow cores, and user MCU

project should be modified for all the yellow and orange cores.

easyDSP help

 100

For the yellow and orage cores, please include easyDSP header and source file (easyAM_v*.*.h,

easyAM_v*.*.c) into user MCU project. The suffix of file name will different by its version. You can find

these file in the folder easyDSP is installed (\source\AM2x). And set the #define directives based on

your application.

And call easyDSP_init() function in the proper location after some initialization functions.

Below is the detailed explanation by cases.

Case 1 :

If core a, b, c and d are CPU1, 2, 3 and 4 respectively, the easyDSP project is set as below.

The output files of all the running cores are registered. And CPU1 and CPU2 are checked as cores

communicating with easyDSP.

easyDSP help

 101

The setting in the header file as below. Also two end points (m and n) should be set for IPC RPMessage.

 Yellow core Orange core

setting

in

easyAM.

h

EASYDSP_POD_IS_CONNECTED_TO_THIS_CO

RE =1

EASYDSP_IS_COMMUNICATING_WITH_MULTI

_CORES =1

D_CACHE_IS_ENABLED =1

MAIN_CORE_SERVICE_END_PT = m

REMOTE_CORE_SERVICE_END_PT = n

EASYDSP_POD_IS_CONNECTED_TO_THIS_CO

RE = 0

EASYDSP_IS_COMMUNICATING_WITH_MULTI

_CORES = 1

D_CACHE_IS_ENABLED = 1

MAIN_CORE_SERVICE_END_PT = m

REMOTE_CORE_SERVICE_END_PT = n

Case 2 :

If core e, f, c and d are CPU1, 2, 3 and 4 respectively, the easyDSP project for core e is set as below.

easyDSP help

 102

the easyDSP project for core f is set as below.

To do RAM booting and flash programming, easyDSP pod should be connected to the core via UART0.

Therefore register all the output files of running cores to easyDSP project of core e (connected to

easyDSP pod via UART0) so that easyDSP project of core e can perform RAM booting and flash

programming.

On the other hand, don't perform RAM boooting and flash programming in the easyDSP project of core

f.

In case that user program of core f is updated and downloaded to core f by easyDSP project of core e,

the easyDSP project of core f needs to reload its output file to update its symbolic information.

This is done automatically if both easyDSP projects (core e and core f) are running in the single PC.

Then easyDSP project of core f shows the message box below.

If both easyDSP projects run in the separate PC, then user need to do manually by executing the menu

'MCU > Reload *.out' in the easyDSP project of core f.

The setting in the header file as below.

 Yellow core

setting in

easyAM.h

EASYDSP_POD_IS_CONNECTED_TO_THIS_CORE =1

EASYDSP_IS_COMMUNICATING_WITH_MULTI_CORES = 0

Case 3 :

If core g, h, c and d are CPU1, 2, 3 and 4 respectively, the easyDSP project for core g is set as below.

The output files of all the running cores are registered. And CPU1 and CPU2 are checked as cores

communicating with easyDSP.

easyDSP help

 103

The setting in the header file as below.

 Yellow core

 setting in

easyAM.h

EASYDSP_POD_IS_CONNECTED_TO_THIS_CORE =1

EASYDSP_IS_COMMUNICATING_WITH_MULTI_CORES =1

D_CACHE_IS_ENABLED = 0

Case 4 :

If core i, j, c and d are CPU 1, 2, 3 and 4 respectively, the easyDSP project for core i is set as below.

The output files of all the running cores are registered. And CPU1 is checked as core communicating

with easyDSP.

The setting in the header file as below.

 Yellow core

 setting in EASYDSP_POD_IS_CONNECTED_TO_THIS_CORE = 1

easyDSP help

 104

easyAM.h EASYDSP_IS_COMMUNICATING_WITH_MULTI_CORES =0

STEP 4 : linker.cmd

In the linker.cmd file, the start address of RAM should be same to or larger than 0x7004.0000 for all

cores, as it is in the TI example project.

STEP 5 : Variable name

Note that the variable name in the easyDSP is changed when easyDSP is communicating with multi

cores.

This is not to mix the variable name from different cores. The variable name 'var' of CPUx (x= 1,2,3 or

4) is changed to 'x:var'. < /FONT>

STEP 6 : IDE setting

1. Make sure that rprc file (*.rprc) is generated in every compilation with the same name

and in the same folder to the output file. This is the default setting of TI CCS. rprc file is used for

RAM booting and flash programming.

2. The debugging information should be included in the output file. This is the default setting of TI CCS.

Otherwise, easyDSP can not recognize the variable.
3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker option. If necessary, you can set the linker option so that the unused

easyDSP help

 105

variables are not excluded.

7.4.2 AM263x hardware

Connection to easyDSP

easyDSP uses 'UART' boot mode for RAM booting and flash programming, and uses 'QSPI(4S) - Quad

Read Mode' boot to run user program in the flash.

Boot Mode SOP3 SOP2 SOP1 SOP0

QSPI (4S) - Quad Read Mode 0 0 0 0

UART 0 0 0 1

QSPI (1S) - Single Read Mode 0 0 1 0

QSPI (4S) - Quad Read UART Fallback Mode 0 1 0 0

QSPI (1S) - Single Read UART Fallback Mode 0 1 0 1

DevBoot 1 0 1 1

According to the table above, SOP1, SOP2 and SOP3 pins should be low while SOP0 pin is connected to

BOOT pin of easyDSP header so that easyDSP can control MCU boot mode.

It is highly recommended to connect RX and TX pins of easyDSP header to MCU UART0 (MUXMODE 0).

Otherwise RAM booting and flash programming is not supported.

In case RX and TX pins of easyDSP header are connected to UART other than UART0 (MUXMODE 0),

don't connect BOOT and /RESET pin of easyDSP header.

easyDSP help

 106

The flash should be connected to MCU QSPI0 and its 'Sector Erase' command should work with 64kB

block such as part number S25FL128SAGNFI000 which is used in TI evaluation board.

#4 pin of easyDSP header is connected to MCU VDDS33.

Note :

- 25MHz XTAL clock source is required.

- MCU captures SOPx pin status ~1ms after PORz release and decides boot mode. So, kindly make

sure there would be no signal output from any circuitry connected to SOPx pin ~2ms after PORz

release.

- TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP pod.

- In case there is a reset IC between easyDSP /RESET and MCU PORz, it should transfer easyDSP

/RESET signal to MCU within 0.5sec.

easyDSP connection to AM263x Launchpad

The manual work to connect easyDSP to TI AM263x Launchpad is shown below. Note that all the

switches of SW1 should be ON and #2 pin of U27 should be detached from PCB.

easyDSP help

 107

easyDSP help

 108

7.5 TM4C
TM4C setting

 STEP 1 : Hardware

easyDSP uses MCU's ROM boot loader to access the flash memory. So the UART0 channel

(PA0/PA1) that is used in the ROM boot loader should be used for easyDSP.

Otherwise, easyDSP can support only monitoring, not flash programming. Also the source file

easyTM4C.c should be modified accordingly by you.

PXn pin acts as a boot pin and you can select it in the easyTM4C.h file. But caution should be taken

when selecting boot pin :

 1. PC0-3, PD7 and PE7 can't be used for TM4C129x MCU

 2. PC0-3, PD7 and PF7 can't be used for TM4C123x MCU

 3. In case other circuitry is connected to this pin than easyDSP BOOT pin, this circuit should not

issue the output signal until ~1sec after MUC reset release.

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU -RST, it should transfer easyDSP

/RESET signal to MCU -RST within 0.5sec.

- TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP pod.

STEP 2 : Modification of easyDSP header file

Two files are provided for easyDSP communication (easyTM4C.h and easyTM4C.c). Please include them

in your project. You can find them in the easyDSP installation folder (\source\TM4C).

In the file, please set a target MCU, MCU clock, baudrate of easyDSP communication and boot pin. The

baud rate should be same to that of easyDSP project.

easyDSP help

 109

STEP 3 : Calling easyDSP functions

Please include easyTM4C.h in the main.c. And in the main(), call easyDSP_boot() very begining and

call easyDSP_init() after the initialization of MCU.

In the easyDSP_boot() function, it is decided which code will be executed, either user program in the

flash or ROM boot loader, depending on the status of boot pin. In case you don't use flash

programming by easyDSP, no need for this function.

In the easyDSP_init() function, all necessary setting for easyDSP monitoring are done.

easyDSP help

 110

STEP 4 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder of output file (ex *.out) with same file name. The hex file extension could be

either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash

programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with

extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time.

 Please refer to the setting of CCS. Especially for CCS, memory width should be 8.

easyDSP help

 111

2. For easyDSP monitoring, the debug information should be included in the output file (ex, *.out). And

the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded.

4. To compile inline functions in the easyTM4C.c, plase enables c99 mode in the compiler options if

necessay.

STEP 5 : Other setting

1. To allow easyDSP to access the flash, the protection feature of flash should be disabled so that the

flash may be written, erased, executed or read.

2. EN bit of BOOTCFG register of MCU should be 1. With this, the booting mechanism is decided by

easyDSP_boot() function.

3. easyDSP can perform flash programming only when either all the flash is empty or easyDSP source

file is programmed in the flash.

 For the other situation than above, you will face the error message below and you should use

easyDSP help

 112

debugger to program flash.

7.6 MSPM0

MSPM0 Setting

STEP 1 : SysConfig - NONMAIN

easyDSP uses the code generated by SysConfig. Below figures are made based on SysConfig 1.16.1.

At first, you can set the NONMAIN area such as BCR and BSL configuration.

If you use TI factory default, you can skip this step 1. If not, please check below.

First, set the BCR configuration.

Fast Boot Mode is disabled. And BSL is enabled.

Second, set the BSL configuration.

If necessary, set the 32 byte password for entering to bootstrap mode. It's all 0xFF by TI factory

default.

BSL Invoke Pin Check should be enabled.

You can use default BSL invoke pin or you can change it to another pin but BSL invoke pin level should

be high in any case.

If necessary, set the UART pin.

Finally enable BSL read out.

easyDSP help

 113

Note : Since easyDSP can't program NONMAIN flash memory region (such as BCR and BSL

configuration area), please use the debugger or any other tool to program NONMAIN flash.

STEP 2 : Hardware

As confitured in STEP 1 or by TI factory default, connect BSL_invoke, BSLRX and BSLTX to easyDSP

header.

If you use TI factory default (No change to NONMAIN flash in STEP 1), refer to the target MCU

easyDSP help

 114

datasheet to identify pin number of those pins. For instance, BSLRX, BSLTX and BSL_invoke has pin

number 26, 27 and 22 respectively for MSPM0L1306xRHB. For instance, BSLRX, BSLTX

and BSL_invoke has pin number 57, 56 and 11 respectively for MSPM0G3507SPM.

For your information, BSL_RX and BSL_TX belong to UART0.

Other considerations :

- Direct connection between easyDSP /RESET and MCU NRST.

- RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

- In case pull-up resistor is attached, resistor value should be higher than several k Ohm.

STEP 3 : SysConfig - UART

Since BSL_RX and BSL_TX use UART0, create UART0 peripheral with the name of 'UART_0'.

The target baud rate is selectable but it should be same to that of easyDSP project setting.

The data format should be 8bit data, one stop bit and no parity bit.

FIFO should be enabled with its RX and TX FIFO threshold level as below.

easyDSP help

 115

Receive and Transmit interrupt should be enabled with the lowest priority level.

It is recommended to have pull-up resistor for TX and RX pins.

Finally as configured in step 1, RX and TX pins are set.

easyDSP help

 116

easyDSP help

 117

STEP 4 : easyDSP source file

Please include driverlib from TI in your project since easyDSP uses it for UART communication.

Two files are provided for easyDSP communication (easyMSPM0.h, easyMSPM0.c). Please include them

in your project. You can find them in the easyDSP installation folder (\source\MSPM0).

Please include easyMSPM0.h in the main.c. And in the main(), call easyDSP_init() after the initialization

of MCU.

In the easyDSP_init() function, all the setting for easyDSP monitoring are done.

STEP 5 : IDE

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder of output file (ex *.out) with same file name. The hex file extension could be

either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash

programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with

extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time.

 Please refer to the setting of CCS. Especially for CCS, memory width should be 8.

easyDSP help

 118

2. For easyDSP monitoring, the debug information should be included in the output file (ex, *.out). And

the option of assembler, compiler and linker should be set accordingly.

3. Depending on compiler's optimization level and linker setting, the unused variables could be

excluded from the debug information and not shown in the easyDSP.

 If you like to avoid this, don't use compiler optimization and set the linker option properly. Like

below in case of CCS.

easyDSP help

 119

4. In case of CCS, to program NONMAIN memory area of flash, below option should be set.

7.7 PSoC4

7.7.1 PSoC4 software

Single-application bootloader configuration is required for easyDSP to access onchip flash of MCU. In

other configuration, easyDSP can monitor the variables but can not program flash.

Below software setting is explained based on PSoC Creator 4.4.

It is assumed that you are already familiar with bootloader and bootloadable. If not please check the

manual from Infineon.

easyDSP help

 120

STEP 1 : Bootloader project

Please make a schematic as below by dragging the compoents from component catalog.

And change the name of bootloader component to Bootloader_UART.

You can add other components if necessary (ex, LED).

First set the 'Bootloader_UART' component as below capture. Note that 'Wait for command time'

should be more than 2000ms.

If required, you can set the security key.

easyDSP help

 121

Second set the UART component as below capture. Use 'UART Basic' tab as its default. Note that

115200bps, 8bits, one stop and no parity is used.

In 'UART Advanced' tab, buffer size should be changed.

easyDSP help

 122

easyDSP help

 123

Please select UART pins according to your design. In this example, P0.4 and P0.5 are used.

easyDSP help

 124

Finally call Bootloader_UART_Start() function in the beginning of main().

With this, all set for bootloader project.

STEP 2 : MCU flash programming with bootloader project

You have to program bootloader project to MCU after compiling bootloader project. If necessary, flash

are for bootloader project can be protected.

easyDSP can't program the flash for bootloader project.

Once bootloader project is programmed to flash, easyDSP can program bootloadable project.

STEP 3 : Bootloadable project

Please make the schematic like below from component catalog. Please change the name of UART

component to UART_ezDSP.
You can also add other components according to your program (not shown here).

easyDSP help

 125

Setting of each component as below :

First for Bootloader component. Please use 'General' tab as it is. Also register Bootloader project hex or

elf file to 'Dependencies' tab.

easyDSP help

 126

Second for UART component.

Please set the communication speed (bps) in the 'UART Basic' tab. It should be same to bps setting of

easyDSP project. But it could be different from bps of bootloader project above. Also note to use 8bits,

no parity, 1 bit stop bit. Also set the parameters of ' UART Advanced' tab as below.

easyDSP help

 127

easyDSP help

 128

Priority of UART interrupt is recommended to be low not to interrupt higher priority interrupt routine.

easyDSP help

 129

UART pins should be same to pins of bootloader project. In this example, P0.4 and P0.5 are used.

Source files (easyPSoC4.h and easyPSoC4.c) are provided for easyDSP communication. Please include

them in your project. You can find them in the folder of easyDSP installation (\source\PSoC).

Finally call easyDSP_init() function in the main(). Withi this, you are ready to use easyDSP.

STEP 4 : IDE setting

1. For easyDSP to access the variable, the debug information should be included in the output file (ex,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

2. *.cyacd file is used for flash programming. So it should exist in the same folder to output file.

3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded. For example, in PSoC4 creator, set the 'Remove Unused Sections' false.

easyDSP help

 130

7.7.2 PSoC4 hardware

Please connect easyDSP header RX and TX pin to the selected UART pins of MCU.

Also connect easyDSP header #4 pin to VDDD.

RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

- In case there is a reset IC between easyDSP /RESET and MCU XRES, it should transfer easyDSP

/RESET signal to MCU XRES within 0.5sec.

- In case pullup resistor is attached, resistor value should be higher than several k Ohm.

7.8 XMC1

 STEP 1 : Hardware

Please connect easyDSP header RX and TX pins to directly UART pins (either P1.3/P1.2 or P0.14/P0.15

pair).

RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

easyDSP help

 131

Also connect easyDSP header #4 pin to VDDP.

STEP 2 : Modification of easyXMC1.h file

Two files are provided for easyDSP communication (easyXMC1.h and easyXMC1.c). Please include

them in your project. You can find them in the easyDSP installation folder (\source\XMC).

Since XMC Peripheral Library is used in the files, this library should be included in your project.

And modify easyXMC1.h file according to your target USIC channel and baudrate.

The baud rate should be same to that of easyDSP project.

Also allocate 8 receive FIFO buffer and 8 transmit FIFO buffer to the channel of USIC easyDSP uses

while avoiding conflict to FIFO buffer of the other channel of USIC module.

STEP 3 : Calling easyDSP_init()

Pleae include easyXMC1.h in the top of main.c and call easyDSP_init() in the main().

easyDSP help

 132

STEP 4 : IDE setting

1. For easyDSP to access the variable, the debug information should be included in the output file (ex,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

2. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded. For example, in the Dave, set the 'Remove Unused Sections' unclicked.

7.9 XMC4

 STEP 1 : Hardware

When XMC4 encounters Power On Reset (PORST) as the reset type, it gets to choose from one of four

boot modes based on what is read off the boot pins (JTAG TCK and TMS).

 TCK TMS Boot mode

 0 1 Normal

 0 0 ASC BSL

 1 1 BMI

 1 0 CAN BSL

Since the easyDSP supports only two boot modes (Normal and ASC BSL), TCK pin should be low (0)

and TMS pin should be selectable (0 or 1) by easyDSP -BOOT pin during power on reset.

Internally to MCU, TCK pin has weak pull-down and TMS pin has weak pull-up. So, external pull

down/up resistor is optional.

easyDSP help

 133

Please connect easyDSP header RX and TX pins to directly P1.4 and P1.5 respectively.

Connection to other UART pins than P1.4 and P1.5 will bring no operation.

RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

Also connect easyDSP header #4 pin to VDDP.

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU -PORST, it should transfer easyDSP

/RESET signal to MCU -PORST within 0.5sec.

- In case pull-up resistor is attached, resistor value should be higher than several k Ohm.

STEP 2 : Modification of easyXMC4.h file

Two files are provided for easyDSP communication (easyXMC4.h and easyXMC4.c). Please include

them in your project. You can find them in the easyDSP installation folder (\source\XMC).

Since XMC Peripheral Library is used in the files, this library should be included in your project.

And modify easyXMC4.h file according to your target MCU and easyDSP communication baudrate.

The baud rate should be same to that of easyDSP project.

Also allocate 8 receive FIFO buffer and 8 transmit FIFO buffer to the channel of USIC easyDSP uses

while avoiding conflict to FIFO buffer of the other channel of USIC module.

STEP 3 : Calling easyDSP_init()

Pleae include easyXMC4.h in the top of main.c and call easyDSP_init() in the main().

easyDSP help

 134

STEP 4 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder to output file (ex *.elf) with same file name. The hex file extension could be

either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash

programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with

extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compilation.

For example, if DAVE IDE is used :

2. For easyDSP to access the variable, the debug information should be included in the output file (ex,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's

easyDSP help

 135

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded. For example, in the Dave, set the 'Remove Unused Sections' unclicked.

7.10 RA

7.10.1 RA hardware

Connection to easyDSP

Direct connection of SCI9 RXD9 and TXD9 of MCU to easyDSP pod is recommended. Please note that

SCI9 should be used to program flash by easyDSP.

RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.

Also connect easyDSP header #4 pin to VCC.

Other considerations :

- In case there is a reset IC between easyDSP /RESET and MCU RES, it should transfer easyDSP

/RESET signal to MCU RES within 0.5sec.

- In case pull-up resistor is required, resistor value should be higher than several k Ohm.

easyDSP help

 136

In case you can't use SCI9, you can use the other SCI channel but only monitoring is available (flash

programming not feasible). In this case let /BOOT and /RESET pins be open.

Compatibility to Debugger

easyDSP uses RXD9 and TXD9 pin of MCU which overlaps with some debugger pins such as JTAG TDO,

JTAG TDI and SWD SWO in case of some of RA4, RA6 and RA8 MCU. Therefore, in this case, you have

to use SWD without SWO.

7.10.2 RA sofrware

RA software (excluding RA0)

easyDSP help

 137

easyDSP provides the source file for its communication based on FSP(Flexible Software Package).

Hereafter, FSP setting will be explained based on version 3.5.0.

STEP 1 : FSP setting

First, activate FSP by clicking 'configuration.xml' file.

Then go to the Stacks tab and generate UART stack. Depending on MCU type, either r_sci_uart or

r_sci_b_uart module should be used.

No setting to DTC Driver since it is not used. Click UART stack to set the properties.

easyDSP help

 138

In case 'properties' window is not shown, use below menus.

All the necessary change is shown in red at below picture :

First, enable FIFO if target MCU supports FIFO for this SCI channel.

Also, change its module name to 'g_easyDSP'. And set the channel # to 9 in order to use SCI9 and

select baud rate properly. Later in your easyDSP projec setting, the same baudrate should be used.

Then change callback name to 'easyDSP_callback' and set its intterupt priority to lowest one.

TXD9 and RXD9 pins should be selected according to hardware setting (check RA hardware setting) .

RA_HW_Setting.htm

easyDSP help

 139

In the following explanation, P109 and P110 are used for TXD9 and RXD9 respectively .

easyDSP help

 140

Move to Pins tab and set the pin configuration so that the operation Mode is 'Asyncronous UART' and

TXD9 is P109 and RXD9 is P110.

In case of some RA4, RA6 and RA8 MCU series, TXD9 and RXD9 overlaps with some debugger pins.

Please set the debugger operation mode to SWD without SWO use.

easyDSP help

 141

The input pullup and higher drive capability is recommended to the pins TXD9 and RXD9.

some MCUs (for example, RA8E1) can enable/disable the clock input to SCI. In this case, the clock should be

enabled in the 'Clocks' tab.

easyDSP help

 142

Finally generate code.

STEP 2 : Calling easyDSP_init()

Two files are provided for easyDSP communication (easyRA_v11.4.h and easyRA_v11.4.c). Please

include them in your project. You can find them in the easyDSP installation folder (\source\RA).

Pleae include easyRA_v11.4.h in the hal_entry.c and call easyDSP_init() function.

STEP 3 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder to output file (ex *.elf) with same file name. The hex file extension could be

either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash

programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with

extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compilation.

For example, if you use e2 studio IDE :

easyDSP help

 143

2. For easyDSP to access the variable, the debug information should be included in the output file (ex,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker option. If necessary, you can set the linker option so that the unused

variables are not excluded. For example, in the e2Studio, set the 'Remove Unused Sections' unclicked.

7.10.3 RA0

Connection to easyDSP

You can use either SAU or UARTA for easyDSP communication.

RX and TX pins of easyDSP pod are connected to MCU directl.

No other connection is required since the flash programming is not supported for RA0 series.

easyDSP help

 144

RX and TX pins of easyDSP pod are pulled up with 100kOhm resistor in the pod.

FSP setting

First, activate FSP by clicking 'configuration.xml' file.

Then go to the Stacks tab and generate UART stack with either r_sau_uart or r_uarta module.

If r_sau_uart module is used for easyDSP communication, please set its properties :

The name of the module is g_easyDSP. Set the channel acc. to your board. The baud rate should be

same to the one in the easyDSP project setting. The name of callback is easyDSP_callback. The priority

of interrupts are the lowest (higher number). Finally set the pin number.

easyDSP help

 145

If r_uarta module is used for easyDSP communication, similarly to r_sau_uart module, please set its

properties like below.

Then go to the Pins tab, and set the pull-up to both RXD and TXD pin.

easyDSP help

 146

Also check if the clock to the used communication channel is enabled in the Clocks tab.

Finally generate the code.

Calling easyDSP_init() and IDE setting

Same to the other RA series. So please check here.

7.11 RX

7.11.1 RX hardware

To do monitoring and flash programming together, SCI1 should be connected to easyDSP.

So connect RXD1 and TXD1 pins of MCU to the easyDSP RX and TX pins.

Also connect easyDSP header #4 pin to MCU VCC.

Please check the corresponding pins by MCU type in the table below. The number of pin should be

checked from MCU datasheet.

easyDSP help

 147

In case MCU has UB or UB# pin, it should be pulled down or pulled up respectively.

Other considerations :

- When reset, easyDSP /RESET pin goes low for 500msec around.

- In case there is a reset IC between easyDSP /RESET and MCU RES#, it should transfer easyDSP

/RESET signal to MCU RES# within 0.5sec.

- RX and TX pins of easyDSP header are pulled up with 100kOhm resistor in the pod.
- In case you can't use SCI1, you can use another SCI channel but only monitoring is doable (flash

programming not doable). In this case no need to connect /BOOT and /RESET pins.

7.11.2 RX sofrware

easyDSP uses the generated code from RX Smart Configurator. You can find the detailed process below

based on RX Smart Configurator v1.40.

STEP 1 : Smart Configurator setting

Please add 'SCI Driver' component by cliking 'Add component' button in the 'Components' tab.

https://www.renesas.com/us/en/software-tool/smart-configurator

easyDSP help

 148

Then r_sci_rx and r_byteq components are created.

Since easyDSP uses SCI channel 1, 'r_sci_rx' components should be set accordingly. Please refer to the

red line below.

The circular buffer is not required for easyDSP. TX and RX queue buffer size should be 12 and 2

respectively at its minimum.

easyDSP help

 149

TEI interrupt is not used.

The interrupt priority level of ERI and TEI should be the lowest, 1.

easyDSP help

 150

easyDSP help

 151

RXD1 and TXD1 pins of SCI1 should be enabled. The other pins of SCI1 are not used.

easyDSP help

 152

Now in the 'r_byteq' components. At least, two queue control blocks are required for easyDSP.

In case you don't use circular buffer in the 'r_sci_rx' component, set the 'Use disable interrupt to

protect queue' as 'Unused'.

In case you use circular buffer, then set as 'Used'.

easyDSP help

 153

In the 'r_bsp' component, set 'Processor Mode' as 'Stay in Supervisor mode'.

RXD1 and TXD1 pins are allocated in the 'Pins' tab. Please set 'Assignment' column so that it matchs

with the hardware setting . Please check the MCU datasheet to allocate 'Pin Number' column.

Finally generate code.

STEP 2 : Calling easyDSP_init()

Two files are provided for easyDSP communication (easyRX.h and easyRX.c). Please include them in

your project. You can find them in the easyDSP installation folder (\source\RX).

First choose the baudrate of SCI communication to easyDSP. Also note it should be same to what you

set in the easyDSP project setting.

easyDSP help

 154

Then please call the easyDSP_init() function in the main.c.

The priority level of SCI interrupt easyDSP uses is the lowest one (IPL[3:0] = 1). The priority level of

the other user interrupt should be set higher than this.

STEP 3 : IDE setting

1. The output file easyDSP uses should have DWARF debugging information. Therefore when using CC-

RX compiler, the output file with DWARF debugging information should be created in every compiling

time. This is actually done as a default in e2 studio.

2. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder to output file with same file name. The hex file extension could be either 'hex'

or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash programming.

If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with extension 'ihex'. Please

set your IDE accordingly to create hex file in every compilation.

For example, if you use e2 studio IDE with GCC :

easyDSP help

 155

Or if you use e2 studio with CC-RX :

3. For easyDSP to access the variable, the debug information should be included in the output file (ex,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

4. The declared but unused variables could be excluded from the debug information depending on

compiler's optimization level and linker option. In this case, you can't monitor this variable with

easyDSP. If necessary, you can set the linker option so that the unused variables are not excluded.

5. easyDSP supports the little endian mode only.

For example, if you use e2 studio with GCC :

easyDSP help

 156

Or, if you use e2 studio with CC-RX :

7.12 TX
TX setting

 STEP 1 : Hardware

easyDSP uses MCU's single boot mode to access the flash memory. So the SIO/UART channel that is

used in the single boot mode should be used for easyDSP.

Otherwise, easyDSP can support only monitoring, not flash writing.

Please kindly check the datasheet of target MCU to identify which SIO/UART channel and which port

pins are used in the single boot mode and connect them to easyDSP pod.

easyDSP help

 157

For example, below datasheet capture for TMPM370FY indicates :

 /BOOT of easyDSP pod should be connected to PF0 of MCU.

 TX of easyDSP pod should be connected to PE0 of MCU.

 RX of easyDSP pod should be connected to PE1 of MCU.

easyDSP help

 158

Other considerations :

- DVDD could be either DVDD3 or DVDD5 depending MCU type.

- In case there is a reset IC between easyDSP /RESET and MCU -RESET, it should transfer easyDSP

/RESET signal to MCU -RESET within 0.5sec.

- In case pull-up resistor is attached, resistor value should be higher than several k Ohm.

STEP 2 : Modification of easyTX.h file

easyDSP help

 159

Two files are provided for easyDSP communication (easyTX.h and easyTX.c). Please include them in

your project. You can find them in the easyDSP installation folder (\source\TX_TXZ).

Since Peripheral Driver library from the MCU supplier are used in the files, this library should be

included in your project.

First, include *_gpio.h and *_uart.h according to MCU.

Also based on the hardware connection above, set the channel number and its port.

Below example is made based on TMPM370. You should modify it according to target MCU.

Finally set the baudrate of easyDSP communication. The baud rate should be same to that of easyDSP

project.

STEP 3 : Calling easyDSP_init()

Pleae include easyTX.h in the top of main.c and call easyDSP_init() in the main() after the initialization

of others.

easyDSP help

 160

STEP 4 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder to output file (ex *.elf) with same file name. The hex file extension could be

either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash

programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with

extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time.

2. For easyDSP to access the variable, the debug information should be included in the output file (ex,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded.

4. To compile inline functions in the easyTx.c, please enables c99 mode in the compiler options if

required.

7.13 TXZ3

 STEP 1 : Hardware

easyDSP uses MCU's single boot mode to access the flash memory. So the UART0 channel

(PA1/PA2) that is used in the single boot mode should be used for easyDSP.

Otherwise, easyDSP can support only monitoring, not flash writing. Also the source file easyTXZ3.c

should be modified accordingly by you.

Other considerations :

- DVDD could be either DVDD3 or DVDD5.

- In case there is a reset IC between easyDSP /RESET and MCU -RESET, it should transfer easyDSP

/RESET signal to MCU -RESET within 0.5sec.

- In case pull-up resistor is attached, resistor value should be higher than several k Ohm.

STEP 2 : Modification of easyTXZ3.h file

Two files are provided for easyDSP communication (easyTXZ3.h and easyTXZ3.c). Please include them

in your project. You can find them in the easyDSP installation folder (\source\TX_TXZ).

Since Peripheral Driver library from the MCU supplier are used in the files, this library should be

included in your project.

First, include the CMSIS header file according to target MCU.

Finally set the baudrate of easyDSP communication. The baud rate should be same to that of easyDSP

project.

easyDSP help

 161

STEP 3 : Calling easyDSP_init()

Pleae include easyTXZ3.h in the main.c and call easyDSP_init() in the main() after the initialization of

others.

STEP 4 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder to output file (ex *.elf) with same file name. The hex file extension could be

either 'hex' or 'ihex'. easyDSP first check if the hex file with extension 'hex' exists and use it for flash

programming. If the hex file with extension 'hex' doesn't exist, easyDSP uses the hex file with

extension 'ihex'. Pleae set your IDE accordingly to create hex file in every compiling time.

2. For easyDSP to access the variable, the debug information should be included in the output file (ex,

*.elf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded.

4. To compile inline functions in the easyTXZ3.c, plase enables c99 mode in the compiler options if

required.

easyDSP help

 162

7.14 LPC
LPC1x00 setting

 STEP 1 : Hardware

easyDSP uses MCU's USART0 channel to communicate with MCU and program flash. So check the

below hardware connection by MCU type.

For LPC1500, pin by different MCU package is shown below.

For LPC1800, make sure that OTP memory is not programmed or the BOOT_SRC bits are all zero so that the boot

mode is determined by the states of the boot pins P2_9, P2_8, P1_2, and P1_1.

Other considerations : TX and RX pin of easyDSP header is pulled up with 100k Ohm resistor inside of easyDSP

pod.

STEP 2 : Use of LPCOpen library

easyDSP help

 163

easyDSP implements USART communication with MCU by using NPCOpen library. Therefore this library

should be included in the user program.

STEP 3 : easyDSP source and header file

Two files are provided for easyDSP communication (easyLPC1x00_va.b.h and easyLPC1x00_va.b.c).

Depending on its version, a and b are changeable. You can find them in the easyDSP installation

folder (\source\LPC).

Please include them in your project according to target MCU.

In the header file, please set a target MCU or MCU package or baudrate of easyDSP communication.

The baud rate should be same to that of easyDSP project.

It differs by target MCU series. Please refer to below for LPC1500.

STEP 4 : Calling easyDSP_init() function

Please include easyLPC1x00_va.b.h in the main.c. And in the main(), call easyDSP_init() after the

initialization of MCU.

In the easyDSP_init() function, all necessary setting for easyDSP monitoring are done.

http://www.nxp.com/lpcopen

easyDSP help

 164

STEP 5 : IDE setting

1. Hex file (Intel format) is used for flash programming. So it should be created in every compiling

time in the same folder to output file (for example, *.axf) with same file name. Pleae set your IDE

accordingly to create hex file in every compilation.

 For example, if you use MCUXpresso IDE, register arm-none-eabi-objcopy -O ihex

"${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.hex" in the Post-build steps.

2. For easyDSP monitoring, the debug information should be included in the output file (for example,

*.axf). And the option of assembler, compiler and linker should be set accordingly.

3. The unused variables could be excluded from the debug information depending on compiler's

optimization level and linker setting. If necessary, you can set the linker option so that the unused

variables are not excluded.

7.15 Cautions

* Reset pin of MCU

Don't connect or disconnect easyDSP pod during MCU operation. It could cause any unintentional reset

to MCU. In case you have to connect, please connect easyDSP to PC first, then to MCU. In case you

have to disconnect, please disconnect easyDSP from MCU first, then from PC.

For your reference, reset signal is driven to low by easyDSP during 500msec. Therefore you can

add enough filters to the reset pin of MCU.

* What is proper baud rate ?

easyDSP help

 165

Normally higher baud rate means faster communication. But MCU should be able to handle this

much high baud rate data communication. For example, it takes around 86usec

(1/115200bps*10bit) for easyDSP to send one byte to MCU at 115200bps baud rate. MCU should

process this one byte data within next 86usec for proper communication. If higher prioritized routine

takes most of time and very small time is left for ISR routine for SCI, then easyDSP fails its

communication and display the value of variables as '?'.

* Various IDE

For Arm MCU, easyDSP is designed for a wide range of software integrated development environments

(IDEs) but is not fully tested for all IDEs. If not working properly, report it to easyDSP@gamil.com .

* Variable is not displayed

Depending of options of compiler and linker, the variable could be not displayed in the easyDSP if this

variable is not used meaningfully in the user program.

This variable is not displayed in the map file too. Or displayed but with its address 0.

To display it in the easyDSP, please change the compiler/linker option accordingly.

8. Menus

8.1 Project

easyDSP deals with your working files with the project concept. The menus belongs to 'Project' menus

are

'New' menu:

Clicking 'New' menu shows the dialog box where you can select the name of project file. The extension

of project file should be "ezd".

mailto:easyDSP@gamil.com

easyDSP help

 166

And then you can set the properties of your project in the property sheet. The property sheet consists

of three pages such as 'Basic', 'Hardware' and 'Miscellaneous'.

'Basic' page sets the target MCU and output file (*.out, *.elf, *.axf and *.x).

First set the target MCU. In case of some STM32 MCU, single or dual bank is specified in the MCU

name only when bank mode should be specified. That is, there is no bank mode in the STM32 MCU

name either when bank mode is fixed (single or dual) in the MCU or when there is no need for

understanding bank mode for easyDSP operation.

For some TI C28x MCUs for which debugging model (either COFF or DWARF) should be specified, the

combo box for this is shown. The debugging model should be same to that of compiler option.

Please note that further improvement or bug fix for coff debugging model is stopped from easyDSP

version 9.

Then the output file should be specified. The output file should exist before creating new easyDSP

project.

Also except TI C28x with COFF debugging model, the output file should be DWARF debugging

information.

Once the project is created, 'Basic' page is not edited any longer.

In case of multi core MCU, please specify the output files for all the used cores of MCU in the user

program. easyDSP uses these files for RAM booting and flash programming. Also specifiy the core

easyDSP help

 167

easyDSP is communicating with in the 'Communication with easyDSP' check boxes.

In below figure, easyDSP is communicating with CPU1 and CPU2 while CPU1, CPU2, CPU3 and CPU4 is

running in the MCU.

'Hardware' page sets the hardware configuration for easyDSP communication.

'Protocol' : This is disabled menu.

'Baud rate' : This value means baud rate at PC side which should be same to SCI/UARt baudrate of

MCU.

'Wait-more time' : During communication with MCU, easyDSP wait for the response from MCU for

certain period. This value extends the waiting time. Please set this value 1000 usec as a first step. If

the communication fails due to slow response from MCU, please try to increase this value a little step

by step (maximum value is 30000usec) until the communication becomes ok.

'Miscellaneous' page sets the remains.

'Seek ...' function is very useful when you type the variable name in the window (For ex, command

window). It recommends candidates for variable name automatically.

'Stop...' function stops communication of easyDSP if the communication fails successively.

'Display printable ...' display not value but character in case either char or unsigned char variable has a

value between 0x20 and 0x7F.

easyDSP help

 168

'Highlight ...' shows the changed value of variables in yellow background color.

External editor : set the editor program to be called in the Tools>Editor menu.

'Open' menu:

opens the existing project.

'Set & Save' menu :

sets the properties of active project and then save.

'Close' menu:

closes current project.

'Delete' menu :

deletes all files easyDSP created.

easyDSP makes some files either in the project folder or in the folder the output file is located. They

are

MCU in the easyDSP project folder in the folder where output file is located

Common

project name.ezd : saves properties of

project

project name.vars : saves information of

variables

project name.cfg : saves information of the

others

C28x

easyDSP_FlashApiWrapper.out

easyDSP_FlashApiWrapper.ou~

easyDSP_FlashApiWrapper.ez.bin :

files for flash operation

output file name.ez.bin : RAM booting and flash

programming file (Gen2)

output file name.ez.hex : flash programming file

(Gen3)

PSOC
output file name.ez.cyacd : flash

programming file

easyDSP help

 169

STM32

TM4C

MSPM0

RA / RX

PSOC

XMC

TX(Z)

LPC

S32

output file name.ez.hex : RAM booting (if

doable) and flash programming file

AM2x
output file name.ez.appimage : RAM booting

and flash programming file

8.2 Edit
Edit menu

No need to explain ;-)

8.3 MCU

8.3.1 Common
MCU menu

'RAM Booting' menu

'Flash ROM' menu

easyDSP help

 170

Please check the below.

C28x

STM32

S32

AM263x

TM4C

MSPM0

PSoC4

XMC1

XMC4

RA

RX

TX, TXZ3

LPC

'Reload *.out' menu

reloads output file (*.out, *.elf or *.axf). It comes in handy when you use debugger and easyDSP

together or when you uses easyDSP only for communication (not using /RESET and BOOT pin).

For the MCU easyDSP doesn't support flash programming such as XMC1, please use this menu to

update symbol information whenever the user program is updated (programmed).

'Reset MCU' menu

The /RESET pin of easyDSP pod goes down to low for 500ms to make reset MCU.

The /BOOT and BOOT pin of easyDSP pod are inactive : no signal output from them.

For the MCU easyDSP doesn't support flash programming such as XMC1, this menu is not disabled.

'Reset Communication' menu

It initializes the states of ISR for easyDSP.

'Pause(Resume) Communication' menu

It pauses the communication of easyDSP. This menu toggles into 'Resume Communication' menu.

'Communication Status' menu

Menu%20DSP%2028x_eng.htm
MenuStm32_eng.htm
MenuAM263x_Eng.htm
MenuTM4C_Eng.htm
MenuMSPM0_Eng.htm
MenuPSoC_eng.htm
MenuXMC1_eng.htm
MenuXMC4_eng.htm
MenuRA_eng.htm
MenuRX_eng.htm
MenuTX_eng.htm

easyDSP help

 171

It displays the target MCU of easyDSP pod and communication state such as read/write fail/success

ratio. Over 90% of success ratio is mandatory to have fluent communication.

8.3.2 C28x
MCU menu (TI C28x)

'RAM Booting' menu

is for booting to RAM area only (NO flashrom area). During RAM booting, communications in all

windows are temporarily paused.

easyDSP help

 172

'Boot' button starts booting operation. First it is checked if user program is appropriate for RAM booting.

If it fails, booting operation stops.

In case the user program is re-compiled in the meantime, easyDSP detects it and asks you whether

you will use new program.

Faster action will be tried if you check 'Enable fast' check box.

If 'Enable fast verifying' is not working properly due to limited resource availability, please disable this

option.

Below error message during RAM booting indicates DSP didn't get into booting mode due to most likely

wrong hardware connection.

'Verify' button check if the RAM booting was done correctly. If failed during verifying, below message

comes out. It means that the data at address 0x240000 is now 0x159D which is supposed to be

0x0x28AD with proper booting.

'Boot > Verify' button is doing 'Boot' and 'Verify' button consecutively.

'Stop' button stops any ongoing activity either booting or verifying.

'Flash ROM' menu for Gen2 MCU, F2837xD and F2838x

easyDSP help

 173

easyDSP help

 174

easyDSP help

 175

It programs onchip flash of MCU. Note that the communication in other windows are temporarily

paused.

Please follow below sequence.

step 1 : First select target device according to your MCU and clock configuration. This menu is available

for some MCU only.

step 2 : Select the sectors for erasing or blank checking. Either use the buttons or click the checkboxes

of sectors.

 All sectors used in the user program are selected with 'Select Used' button. The other way

around with 'Select Not Used' button.

 For some MCUs, Freeze checkbox is provided to enable or disable sector selection.

step 3 : When the buttons (‘Erase’, ‘Blank Check’,‘Program’, ‘Verify’ or ‘Unlock’) are pressed first

time, easyDSP boots MCU with the agency program (not user program) to handle flashrom

manipulation.

 If the output file (*.out) is updated meantime, easyDSP ask the user to use update output file

or not.

 One click for all operations possible (ex. 'Erase > Program > Reset > Exit' button)

step 4 : Now MCU is booted and communicates with easyDSP for proper flashrom access.

step 5 : when exiting this dialog box, easyDSP forces MCU to be reset. Then MCU boots with flashrom

and user program starts.

note) above dialog box looks different depending on the MCU type

note) For 2837xD and 2838xS(D), this will program the supplied data portion in flash along with

automatically generated ECC(Error Correction Code).

note) In case below menu is activated, bps of flashAPI wrapper can be selected to reduce flash

operation time. Note that certain bps could not work.

 This bps value has nothing to do with the bps value used in variable monitoring. So, don't need

to match with the bps value in the easyDSP header file and in the project setting.

easyDSP help

 176

'Flash ROM' menu for C2834x series

Since 2834x doesn't have internal flash, easyDSP supports external flashs with SPI interface. They are

AT25DF021(2M bit), AT25DF041(4M bit), AT26DF081(8M bit), AT25DF321(32M bit), M25P20(2M bit),

M25P40(4M bit), M25P80(8M bit), M25P16(16M bit), M25P32(32M bit) manufactured by ATMEL or

Numonyx. Other flashs which support same commands and features to above could be operated.

There are two kinds 'Erase' function : 'Erase chip' erases all chip memory. 'Erase block' erases only the

memory region which will be programmed with user program. Because 'Erase block' uses '4K byte

block erasing' feature of ATMEL flash, the memory region to be erased will be normally larger than the

actual code size, at the most, 4K bytes.

Please note that easyDSP does 'global unprotect' action to the flash during its operation.

Also note that easyDSP sets LOSPCP = 2 and SPIBRR = 0 to control SPI-A boot mode speed.

'Flash ROM' menu for others

This is for Gen.3 single core MCU and Gen.3 multi core MCU like F28Px.

It programs onchip flash of MCU with user program. Note that the monitoring of easyDSP is

temporarily paused during flash operation.

easyDSP help

 177

Please follow below sequence.

step 1 : If necessary, set the CSM key values and unlock CSM by using 'CSM password' and 'Unlock

CSM' buttons

step 2 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

checkbox of sectors.

 All sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

step 3 : When the buttons (Erase, Blank, Program+Verify, Verify) are clicked first time, MCU enters to

single boot mode after reset.

step 4 : Execute necessary flash actions.

 note) It programs the supplied data portion in flash along with automatically generated

ECC(Error Correction Code).

step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program

starts.

8.3.3 STM32
MCU menu (ST STM32)

easyDSP help

 178

'RAM Booting' menu

is for booting to RAM area only (NO flashrom area). During RAM booting, communications in all

windows are temporarily paused.

'Boot' button starts booting operation. First it is checked if user program is appropriate for RAM booting.

If it fails, booting operation stops.

In case the user program is re-compiled in the meantime, easyDSP detects it and asks you whether

you will use new program.

Before action, easyDSP check MCU's bootloader version and display it on the title bar of window.

'Stop' button stops any ongoing activity.

Note that RAM booting is not supported for dual core MCU.

'Flash ROM' menu

It programs onchip flash of MCU with user program. Access to OTP memory, Data memory and option

byte is not supported.

Its functionality could be limited with activated Trust Zone or Secure MPU.

Note that the communication in other windows are temporarily paused.

easyDSP help

 179

Please follow below sequence.

step 1 : Select the flash pages to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

checkboxes of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

 Freeze checkbox disables the sector selection.

step 2 : If 'Option...' button is enabled, click it and select the proper option.

 For example, you choose (not change) SWAP_BANK bit status for STM32G0B1.

 Since the option is saved, you can choose option only when change.

step 3 : When the buttons (‘Program’, ‘Verify’, 'Erase' or 'Erase chip') are clicked first time, MCU enters to

bootload mode after reset.

step 4 : Execute necessary flash actions.

 'Erase chip' erases all the flash in the MCU regardless of selected check box.

step 5 : When exiting this dialog box, use 'Reset > Exit' button. It makes MCU reset and boot with

flash. And user program starts.

 If you exit this dialog box without MCU reset, MCU still stay in the bootload mode.

8.3.4 S32
MCU menu (NXP S32)

easyDSP help

 180

RAM Booting menu

This menu is not supported.

Flash ROM menu

NOTE : this menu is working only when EZ_BOOTLOADER_USE is defined as 1 in the easyS32**.h file.

For detailes, refer to this page.

It programs onchip flash of MCU with user program. During this operation, the monitoring of

easyDSP is temporarily paused.

Note that you have to disable any flash related protection feature in the MCU while using this menu.

S32_Setting_Eng.htm

easyDSP help

 181

step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

checkbox of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

 Freeze checkbox disables the sector selection.

step 2 :When the buttons (Erase, Program, Verify) are clicked first time, MCU enters to bootloade

(easyDSP_boot() function) after reset.

step 3 : Execute necessary flash actions. 'Blank' button is disabled.

step 4 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program

starts.

Note :

To program flash, the bootloader should be provided since there is no ROM bootloader in this MCU. The

bootloader easyDSP provides is the function (name : easyDSP_boot) and it resides in the user program.

Therefore it can program flash only when it is already programmed in the flash. In case flash is empty

or flash doesn't have easyDSP bootloader, you can't enter into the bootloader and will see the message

below. In this case, you have to use the debugger to program flash. And in same principle, you have to

easyDSP help

 182

use debugger to program easyDSP bootloader into flash at the beginning.

8.3.5 AM263x

'RAM Booting' menu

It is for MCU booting to RAM area only (NO flashrom area) by using TI SBL UART mechanism.

During RAM booting, easyDSP monitoring in all windows is temporarily paused.

easyDSP doesn't provide SBL UART image file. It provides the method for RAM booting using the given

SBL UART image file from either TI or your own.

Please follow below steps.

step 1 : Please select the application image file to be downloaded to RAM. By default, the app image

file which easyDSP is using is selected. But you can change it by clicking 'Application image' button.

step 2 : Please choose SBL UART image file via 'SBL image' button and then input the baudrate of SBL

UART.

 If you use the prebuilt SBL by TI (the files located in

C:\ti\mcu_plus_sdk_am263x_09_00_00_35\tools\boot\sbl_prebuilt folder for example), set the

baudrate to 115200.

 If you use your own SBL UART, set the baudrate according to your own SBL UART.

easyDSP help

 183

step 3 : 'RAM Boot > Exit' button starts booting operation. In case the user program is re-compiled in

the meantime, easyDSP detects it and asks you whether you will use new program.

 'Stop' button stops any ongoing activity.

'Flash ROM' menu

It programs user program to SPI flash. easyDSP monitoring in all windows is temporarily paused and

below dialog box appears.

easyDSP doesn't provide SBL image files themself. It provides the method for downloading SBL and

flashing the application using the given SBL image files from either TI (prebuilt SBL) or your own.

Please follow below steps.

step 1 : Please select the application image file to be downloaded to SPI flash. By default, the app

image file which easyDSP is using is selected. But you can change it by clicking 'image file' button.

 Please note that easyDSP generates app image file (file extension = ez.appimage) from *.rprc

files created by IDE.

step 2 : Please choose SBL UART Uniflash image file via 'image file' button and then input the baudrate

of the SBL.

 If you use the prebuilt SBL by TI (the files located in

C:\ti\mcu_plus_sdk_am263x_09_00_00_35\tools\boot\sbl_prebuilt folder for example), set the

baudrate to 115200.

 If you use your own SBL, set the baudrate according to your own SBL.

step 3 : Please choose SBL QSPI image file via 'image file' button. And set the offset where the app

image will be written to SPI flash.

 For prebuilt SBL by TI, the offset is 0x80000. For your own SBL, set the offset accordingly.

step 4 : Flashing SBL QSPI by clicking 'Flashing SBL QSPI' button. Once done, not required anymore

until you change the SBL QSPI.

Once all set until step 4, you don't need to repeat the steps.

step 5 : Execute necessary flash actions by clicking buttons in the 'Operation' area.

 When the buttons (‘Flashing', ‘Verify’ or 'Erase') are clicked first time, MCU enters to boot mode

easyDSP help

 184

after reset and SBL UART Uniflash is downloaded and runs.

 Flashing is the successive action of Erase > Program > Verify. So, Erasing or Verifying

before/after flashing is optional.

 Note that flashing and verifying action is done in 192kB block unit.

step 6 : When exiting this dialog box, use 'Reset > Exit' button. It makes MCU reset and boot with

QSPI (4S) - Quad Read Mode. And user program starts.

 If you exit this dialog box without MCU reset, MCU still stay in SBL and the easyDSP monitoring

will fail.

8.3.6 TM4C
MCU menu (TI TM4C)

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs onchip flash of MCU with user program. Note that the monitoring of easyDSP is paused

with this menu.

easyDSP help

 185

Please follow below sequence :

step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

checkbox of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

 Freeze checkbox disables the sector selection.

step 2 : When the buttons (Erase, Program) are clicked first time, MCU enters to ROM boot loader

after reset.

step 3 : Execute necessary flash actions.

step 4 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program

starts.

Note : Since MCU ROM boot loader doesn't support verify function, easyDSP provides 'Verify (with

easyDSP)' button instead. This is verification of flash contents by using easyDSP monitoring, not by

ROM boot loader. This button is disabled once MCU enters ROM boot loader.

8.3.7 MSPM0

easyDSP help

 186

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs MAIN flash memory region of MCU with user program.

Please disable any flash related protection feature in the MCU while using this menu.

Since easyDSP can't support NONMAIN flash memory region (such as BCR and BSL configuration area),

please use the debugger or any other tool to program NONMAIN flash.

When this menu is activated, the monitoring of easyDSP is temporarily paused.

Please follow below sequence.

step 1 : Set the 32 bytes password to enter bootstrap mode. It is all 0xFF at TI production state.

 If you set them in SysConfig like below,

easyDSP help

 187

 you can input like below.

step 2 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

checkbox of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

 Freeze checkbox disables the sector selection.

step 3 : When the buttons (Erase, Program, Verify) are clicked first time, MCU enters to bootstrap

mode after reset.

step 4 : Execute necessary flash actions.

 'Verify' button acts differently depending on the 'BSL Read Out Enable' value in the SysConfig

> BSL Configuration tab.

 If read out is disabled (like TI factory default), it checks 1024 bytes CRC without reading the

flash memory.

 If read out is enabled, it reads the flash memory.

step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program

starts.

8.3.8 PSoC4

RAM Booting menu

This menu is not supported.

Flash ROM menu

easyDSP help

 188

It programs onchip flash of MCU with user program only for single-application bootloader configuration.

Note that the monitoring of easyDSP is temporarily paused.

Please follow below sequence.

step 1 : Select the flash array and row to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or

click the checkbox of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

step 2 : If bootloader security key is used, please input the key value after clicking 'Use security key'

button.

step 3 : When the buttons (Erase, Erase+Program, Verify) are clicked first time, MCU enters to

bootloader mode after reset.

 Also silicon ID, selicon revision, bootloader version is displayed in the title bar.

step 4 : Execute necessary flash actions.

step 5 : Click 'Start User Program' button when exiting this dialog box. It makes MCU reset and

user program starts.

note : erasing the flash where bootloader program is located is not enabled.

8.3.9 XMC1
MCU menu (Infineon XMC1)

easyDSP help

 189

RAM Booting menu

This menu is disabled.

Flash ROM menu

This menu is disabled.

8.3.10 XMC4
MCU menu (Infineon XMC4)

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs onchip flash of MCU with user program. Note that the monitoring of easyDSP is

temporarily paused.

easyDSP help

 190

Please follow below sequence.

step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

checkbox of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

step 2 : If necessary, use write-protection.

step 3 : When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to

bootloader mode after reset.

step 4 : Execute necessary flash actions.

step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program

starts.

NOTE) programming to not erased sector may causes malfunction.

8.3.11 RA
MCU menu (Renesas RA)

easyDSP help

 191

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs onchip flash of MCU with user program. Note that flash programming is not supported

for RA0 series.

Note that the programming would be not available in case security or protection is set to the memory.

When clicked, the monitoring of easyDSP is temporarily paused and dialog will be present as below.

Please follow below sequence.

step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

easyDSP help

 192

checkbox of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

 Freeze checkbox disables the sector selection.

 Note that erasing of option flash is not performed since it is not necessary.

step 2 : When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to

bootmode after reset.

 For MCU without DLM(Device Lifecycle Management), ID code will be used to unlock MCU if

required.

 For MCU with DLM, DLM state transition is not supported.

step 3 : Execute necessary flash actions.

step 4 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program

starts.

8.3.12 RX
MCU menu (Renesas RX)

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs onchip flash of MCU with user program except the protected area by area protection or

trusted memory.

Therefore please disable any flash related protection feature in the MCU while using this menu.

When this menu is activated, the monitoring of easyDSP is temporarily paused.

easyDSP help

 193

Please follow below sequence.

step 1 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

checkbox of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

 Freeze checkbox disables the sector selection.

step 2 : When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to

bootmode after reset.

step 3 : Execute necessary flash actions.

step 4 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program

starts.

If boot mode ID code protection is enabled in the MCU, MCU enters to boot mode only when ID code

you input matches.

If you set the ID code like below in the Smart Configurator, please set the ID code in the flash dialog

as above.

easyDSP help

 194

Note :

1. All the flash contents are erased before entering to boot mode if the control ID is neither 0x45 nor

0x52 for RX100 and RX200 MCU series.

2. For RX64M, RX660, RX66T, RX71M and RX72T series, programming of option setting memory is not

supported.

8.3.13 TX, TXZ3

RAM Booting menu

This menu is not supported.

Flash ROM menu

It programs onchip flash of MCU with user program. Note that the monitoring of easyDSP is

temporarily paused.

easyDSP help

 195

Please follow below sequence.

step 1 : By clicking 'Password' button, set the password which is required to enter single boot mode.

 For TX series, input 12 bytes value (default = FFFFFFFFFFFFFFFFFFFFFFFF) in below dialog box.

 For TXZ3 series, input related values in below dialog box.

easyDSP help

 196

step 2 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

checkbox of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

step 3 : When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to single

boot mode after reset.

step 4 : Execute necessary flash actions.

step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program

starts.

Note) programming to not erased sector may causes malfunction.

Note) Blank and Protect buttons are disabled.

8.3.14 LPC
MCU menu (NXP LPC1x00)

RAM Booting menu

This menu is disabled.

Flash ROM menu

It programs onchip flash of MCU with user program. During this operation, the monitoring of

easyDSP is temporarily paused.

Note that you have to disable any flash related protection feature in the MCU while using this menu.

easyDSP help

 197

Please follow below sequence.

step 1 : In case MCU has two flash banks (for example, part of LPC1800 series), select the active flash

bank where your program will run after reset.

step 2 : Select the flash sector to be erased. Use 'All', 'None', 'Used', 'Not Used' buttons. Or click the

checkbox of sectors.

 All the sectors used in the user program are selected with 'Used' button. The other way around

with 'Not used' button.

 Freeze checkbox disables the sector selection.

step 3 :When the buttons (Erase, Program+Verify, Verify) are clicked first time, MCU enters to

bootmode after reset.

step 4 : Execute necessary flash actions.

step 5 : Click 'Reset>Exit' button when exiting this dialog box. It makes MCU reset and user program

starts.

8.4 Tools

You can use various tools.

easyDSP help

 198

'Open Project Directory' : opens the folder of the active project.

'Editor': runs the editor which you set before in project settings.

'Calculator' : runs the calculator of Windows.

8.5 Window

Opening/closing/arranging windows.

8.6 Help
Help menu

'Help...' : Opens this help file

'About easyDSP...' : basic information of easyDSP

easyDSP help

 199

9. Windows

9.1 Command

Command window is designed for writing or reading variables. The available commands are found by

typing 'help' command. All commands are executed by enter-key input.

* Tool bar()

Update the block. If you select the block of commands by dragging mouse and then press this

button, the commands which belong to the block are updated. If no block selected, the current line is

updated. You can do it by clicking right button of mouse.

Run the block. If you select the block of commands by dragging mouse and then press this button,

the commands which belong to the block are executed. If no block selected, the current line is

executed.

Insert new line without running command. When you press enter key, the corresponding line is

running as command. If you use this tool button, new line is inserted without running command. Same

as 'Ctrl-Enter' key press.

Read command file. Copy the file to the command window. No execution. You can also type 'r

filename' in the command window.

Load command file. command file is the set of commands. Frequently used commands can be

saved into command file and then use this function. You can also type 'l filename' in the command

window.

Save the block of lines to file. Save the selected block of commands as a file. Afterwards, you load

this file by 'l' commands.

* Commands :

Caution:

1: The number of character in one command line should not exceed 300

2: all commands should be small-character

easyDSP help

 200

Decimal system

dec var decimal display (default)

hex var hex-decimal display

bin var binary display

Assign and Display

var = display the value of var

&var = display the address of var

*var =

In case var is pointer to basic type,

display the value of variable pointed by pointer var

note) not supported for Arm MCU

(*var).x =

In case var is pointer to struct/union type,

display the value of variable x pointed by pointer var

note) not supported for Arm MCU

var = number

assign value to var

0x***(hex-decimal) form is supported

If var is float type, following dimension form is supported

3e-3, 23K, 23m, 0.34p

For dimension usage, refer to 'watch window'

var1 = &var2
assign the address of var2 into var1

var1 should be int type or unsigned int type

var =

'character'

In case var is either char or unsigned char type, printable character can be assgined

such as 'A'. To display its value also with printable character, please check the option

'Display printable character ...' optino in the 'miscellaneous' tab in the project setting.

var = <exp>

assign the result of exp into var

Example of expression:

<e^pi-pi^e>, <1/ln(x)/x>, <exp(-1/pow(x/100,2))>

*var =

number or

<exp>

In case var is pointer to basic type variable, assign number or expression to the

variable pointed by pointer var

note) not supported for Arm MCU

(*var).x =

number or

<exp>

In case var is pointer to struct or union variable, assign number or expression to the

variable x pointed by pointer var

note) not supported for Arm MCU

var =

numberQn

ex. aa =

3.3Q15

Q-format assignment.

n at Qn is from 1 to 15 in case var is 16bit integer.

n at Qn is from 1 to 31 in case var is 32bit integer.

number could be float.

var =

numberQ

ex. aa = 3.3Q

If you set default Q number to var, then you can omit to describe it. For example, if var

has default Q number 12, then var=3.14Q has the same effect as var=3.14Q12.

easyDSP help

 201

var =

<exp>Qn

var = <exp>Q

expression in <> is automatically calculated and then processed as in number

Others

clear clear all command window context

// one line comment

help list all commands

l file
load command file (default extension = cmd). That is, execute the contexts of command file by

line-to-line.

r file read command file. Copy the file to the command window. No execution.

skip During executing command file, the commands after 'skip' command are ignored.

* Dimension / Q assignment functionality

Dimension format (ex, 2.3m, 400p) is for writing/reading float type variables.

Q format (ex, 3.14Q15) is for writing/reading integer type variables and is available only for 2x MCU

series.

You can set their default configuration for each variables only in 'Watch' window. For more details,

please refer to the 'Watch' window section in this help.

9.2 Watch

You can read from or write to the variables in watch window. Note that only visible items are updated

to reduce the communication burden of MCU.

The function of buttons are ..

(toggled) : displays all variables or only registered variables

: registers variable (same to 'Insert' key)

: delete variable (same to 'Delete' key)

 : move up variable

 : move down variable

easyDSP help

 202

: loads the list of registered variables from the text file. The value of variables are not changed due

to this action.

: saves the list of registered variables to text file. It saves the value of variables too. You can load

this file in Command window so that you change variables to the value in current watch window. This

action helps handle the variables related to board settings or event recording.

Some details for each column are.....

Column Function

Name

It displays variable name.

You can use 'value at address operator (*)' for TI C28x MCU. For example,

 *pointer variable when pointing to basic type

 (*pointer variable) when pointing to structure/union type

Value

It displays variable value.

Mouse right click toggles the display mode (decimal => hex-decimal => binary =>

decimal....). Hex-decimal number begins with "0x". Binary number begins with "0b". But

display mode of pointer variable is fixed to hex-decimal.

If you specify dimension, the value is displayed as like 100u, 1K, 1p and so on. If you

specify Q-format, the value is displayed such as 3.14Q15.

You can change the variable by clicking left mouse button or pressing enter-key. Either

number or <expression> is possible as an input format.

Various format is supported when you input the value to the variable. Please check the help

file of 'Command' window help file.

Type It displays the type of variable.

Address It displays the address of variable.

Dimension

Depending on the variable type, this column can display either dimension or Q format.

Dimension

If the variable is floating-point type, you can set the dimension of variable.

You can change the dimension by clicking left mouse button. You can also use dimension

when writing to the variable. For example, writing "30u" is same as "0.0003".

dimension p = pico (10-12)

dimension n = nano (10-9)

dimension u = micro (10-6)

dimension m = mili (10-3)

dimension K = Kilo (103)

dimension M = Mega (106)

dimension G = Giga (109)

Q format

If the variable is integer type, you can set the Q format of variable. Q format is

helpful especially to fixed point MCU. Q0 to Q15 can be applied to 16bit integer variable. Q0

to Q30 can be applied to 32bit integer variable.

Once the variable is set by Q-format, it can be read/written as a float type variable. Plot and

Chart window also displays Q-format integer variable as it is a floating-point type.

easyDSP help

 203

- Reading integer variable

if integer variable has Q0(default) format , then it is displayed as an integer value.

if integer variable has Q15 format, then it is displayed as fraction number, for example,

'3.14Q15' with suffix 'Q15'.

- Writing integer variable

if integer variable has Q0(default) format, below writing method is possible.

 var1 = 314

 var1 = 3.14Q15 (3.14 is converted as Q15 format then written to var1)

 var1 = <cos(pi/3)>Q15 (Since cos(pi/3) is 0.5, it's same to 0.5Q15)

if integer variable has Qn(n=1-31) format, below writing method is possible.

 var1 = 3.14Q (3.14 is converted Q format of var1 then written to var1)

 var1 = 3.14Q15 (3.14 is converted Q15 format then written to var1. It doesn't

care for Q-format of var1)

 var1 = <cos(pi/3)>Q (Since cos(pi/3) is 0.5, it's same to 0.5Q)

 var1 = <cos(pi/3)>Q31 (Since cos(pi/3) is 0.5, it's same to 0.5Q31)

9.3 Plot
Plot window

This window plots the value of variables in real-time and saves its data for some time. If the dynamics

of the variable is rather slower than the sampling interval, this window will act as an recorder.

The integer variable with Q-format is displayed as it is float type. For example, 32bit integer variable

with Q31 format is displayed within 1 and -1.

Toolbar

: you can set the variable name, min/max/auto of Y-axis display and display mode. Maximum 8

variables can be displayed in one plot window.

 The minimum sampling interval is 5msec. easyDSP reads the value of variable in every sampling

interval, then displays it for 'total plot period' duration.

easyDSP help

 204

 Please note that maximum count of data is limited to 4,294,967,295 per variable. In case

PC memory is not enough, it will be less than that.

 Please note that the sampling interval you set is not guaranteed. Most of cases, actual

sampling interval is longer than your setting value especially when the data count is large.

 Also timer resolution of Windows systme is roughly 10msec.

 The setting can be saved to and loaded from the file by clicking 'Save'/'Load' button.

 The colors and symbols are predefined as follows.

 channel #1 : red - circle

 channel #2 : blue - square

 channel #3 : green - triangle

 channel #4 : violet - diamond

 channel #5 : black - right triangle

 channel #6 : weak green - left triangle

 channel #7 : grey - '+' shape

 channel #8 : orange - 'x' shape

(toggled) : pauses graph / resumes graph.

: shows all graph data. Its shows all the data stored in memory allocated to support 'Total plot

period'.

: shows recent data. It shows the latest data fitting to current plot window size.

: saves the graph into graphic file (bmp, jpg, png formats) or save the graph data into text file (csv

format as shown below).

easyDSP help

 205

: saves the graph data to record file (file extension = rec). You can open the record file with record

window.

Useful features

- Tooltip function : The data value at the mouse cursor position will be displayed with small box

- If the communication failed with MCU, the corresponding data point is not displayed at all. As shown

below, the line looks broken.

 Same when the user intentionally pauses the communication.

- Versatile line display mode by selecting symbol/line/visibility.

easyDSP help

 206

- X-axis zoom in/out possible with mouse wheeling.

- Screen dragging is possible in X-axis direction by dragging mouse. (mouse cursor has special shape

in this mode)

easyDSP help

 207

9.4 Chart

It displays all data of 1-dim array type variable. So, you can use it as an software substitute for the

oscilloscope, if your MCU program samples a certain variable into this array variable.

Writing to the array is not allowed in Chart window.

It displays the Q-format integer variable as its fractional number. (Ex, 32bit integer with Q31 format is

displayed in the range of +1/-1).

Toolbar

: When clicked, the below dialog box shows up and you can register upto 8 variables and its display

properties.

 'Channel' : You can select the one-dimensional array variable.

 'Scale' : Select the Y-axis range. 'Auto' will adjust its scale automatically based on the variable

values in every display.

 'Display' : Determines its display mode. The data acquisition keeps going whatever its display

mode is.

 'Enable fast reading' : makes chart update faster when the MCU resource for communication with

easyDSP is enough.

 If this option is not working properly, the window becomes empty.

 The colors and symbols are predefined as follows.

 channel #1 : red - circle

 channel #2 : blue - square

 channel #3 : green - triangle

 channel #4 : violet - diamond

 channel #5 : black - right triangle

 channel #6 : weak green - left triangle

 channel #7 : grey - '+' shape

 channel #8 : orange - 'x' shape

easyDSP help

 208

: updates graph only for one time. If your data are too large, updating them in every sampling

interval takes so much time. Please use this toolbar in that case.

(toggled) :pauses graph update / resumes graph update.

: shows left-most part of the graph

: shows all graph data.

: shows right-most part of the graph.

: saves the current graph into graphic file (bmp, jpg, png formats) or save the current graph data

into text file (csv format).

: saves the graph data to record file (file extension = rec). You can open the record file with record

window.< /FONT >

Useful features

- Please check the link how to use the graph

9.5 Record

It displays the data of record file (extension = rec) which was saved before in either Chart window or

Plot window.

Thus, your first action is opening the record file by clicking button.

When opening it, all settings you made before was automatically restored i.e. record file, zoom in/out

area and various display mode.

Window%20Plot.htm#UsefulFeatures

easyDSP help

 209

Toolbar

: When clicked, the below dialog box shows up with the information of record file name and its

saving time. The other part is same to that of either Chart or Plot window.

 'Channel' : It just display the variable name and its data count as the record file has. No change

is possible.

 'Scale' : Select the Y-axis range. 'Auto' will adjust its scale automatically based on the variable

values in every display.

 'Display' : Determines its display mode.

 The colors and symbols are predefined as follows.

 channel #1 : red - circle

 channel #2 : blue - square

 channel #3 : green - triangle

 channel #4 : violet - diamond

 channel #5 : black - right triangle

 channel #6 : weak green - left triangle

 channel #7 : grey - '+' shape

 channel #8 : orange - 'x' shape

: shows the left-most part of graph.

: shows all graph data.

: shows the right-most part of graph.

: load the record file. This is your first action to use this window.

: saves the current graph into graphic file (bmp, jpg, png formats) or save the current graph data

into text file (csv format).

Useful features

- Please check the link how to use the graph

Window%20Plot.htm#UsefulFeatures

easyDSP help

 210

9.6 Memory
Common

You can monitor and change the memory under given address. But change of memory is available only

for RAM memory.

Note that only visible items are updated to reduce the communication burden of MCU. So, please

minimize the window size so that the communication burden of MCU could be also minimized.

easyDSP limits the address range according to MCU. In case the adress is limited by easyDSP, the data

of address is displayed as '-' without reading.

NOTE :

1. For Arm core MCU, HardFault is caused by accessing an invalid address or security setting. Please be

careful when setting the address.

2. For a certain STM32 MCU with secure MPU activated, MCU can be stuck after memory access.

This window displays a memory with hex format and variable bit width (8/16/32 bits).

To change its value, first select the row and click left button of mouse in the target location.

Versatile address input is available such as 0x1234 (hex), 1234 (hex without 0x prefix) and &variable.

Also comment (//) can be added to the address input such as '0x1234 // register'.

In the address combo box, the recent addresses are registered so that you can easily swap between.

easyDSP help

 211

Total memory size to be displayed in a window is 1kB (0x400). But regular data update is limited to

only visible area of window.

Note :

 1. The start address is 4B aligned for TI C28x MCU.

 example) if input address is 0x--0 or 0x--1, then start address is 0x--0.

 example) if input address is 0x--2 or 0x--3, then start address is 0x--2.

 2. The start address is 8B aligned for Arm core.

 example) if input address is 0x--0 to 0x--7, then start address is 0x--0.

 example) if input address is 0x--8 to 0x--F, then start address is 0x--8.

 3. The first memory address shown in the window could be not the address you input in the adress

combo box.

 4. 1kB memory area is displayed from the start address.

 5. In case &var format is used as an address input, if it is changed with code modification, the

address of the window is automatically changed after MCU booting.

When easyDSP communicates with multi cores of ARM MCU

You can select which core accesses the memory.

This is useful in case each core has different memory contents.

If the start address is set by '&n:var' format, the core is fixed to CPUn.

9.7 Array

In Array window, the values of array variable which is one dimensional or two

dimensional are displayed with grid view.

Note that only visible cells are updated to reduce the communication burden of MCU.

easyDSP help

 212

The member of array should be fundamental type. Please use Tree window if the member of array is

structural variable type. You can change its value by mouse left button or enter key.

You can use ‘copy-paste’. Especially with Microsoft Excel program. Please select block by clicking

column or row of this array. You can select all by clicking the name of variable. Note that it could take

addtional communication time since easyDSP first fills the empty cells (if any) before copying.

9.8 Tree
Tree window

In tree window, the values of array, structure type variable are displayed with tree view.

Note that only visible cells are updated to reduce the communication burden of MCU.

By clicking left mouse button or enter key input, you can change the value of variable.

By clicking right mouse button, you can change display mode (decimal => hex-decimal => binary = >

decimal....).

10. Trouble Shooting

10.1 Common
Trouble : easyDSP communication fails at first try of easyDSP use

Shooting: there are several reasons for this. Please check below check points.

check point 1 : If ram booting or flash programming is not successful, please check the hardware

setting particularly for connector pin mapping, contact failure of connector and cable. You can check if

the hardware and software setting is proper by running MCU with debugger and monitoring the

variables by easyDSP.

check point 2 : The easyDSP source file and header file should be included in your project.

check point 3 : #define variable should be set properly in the easyDSP header file.

check point 4 : In the main.c, easyDSP related functions should be called.

check point 5 : The baud rate of project setting should be same to that in the easyDSP header file.

check point 6 : In the user program, don't allocate SCI or UART for easyDSP to another GPIO pins.

easyDSP help

 213

check point 7 : In the user program, don't allocate GPIO for easyDSP to another function.

check point 8 : easyDSP ISR (Interrupt Service Routine) should have enough time resource to run

properly. Please check below.

Trouble : communication fails due to the lack of time resource to

easyDSP

Shooting: You have to secure the required time resource to easyDSP communication. Please try below

methods.

1. Increases 'wait-more-time' in the project menu

2. Slows down the baud-rate

3. Minimize the number of variables of monitoring (For example, use Command Window only)

4. If possible, increase the priority of easyDSP ISR (SCI or UART)

Trouble : At first, easyDSP works well but soon it fails. Why?

Shooting 1 : easyDSP uses the lowest prioritized ISR (Interrupt Service Routine) of MCU by default. If

higher prioritized interrupt routine starts to take most of time resource, then ISR for easyDSP doesn't

work properly. Please refer to above trouble and shooting.

Shooting 1 : in a power electronics system with high voltage and high current switching operation,

easyDSP communication could failed due to either conducted or radiated noise. Please take a measure

to reduce the noise accordingly.

Trouble : easyDSP is not connected

Cause : mechanical connection is not stable

Shooting : please connect easyDSP directly to PC (not via USB extension port) or use different USB

port or use new USB cable.

Trouble : Error message like below

Shooting : You will face below (or similar) error message with 32bit Windows. Please use 64bit

Windows.

Trouble : can't access the website (www.easydsp.com)

http://www.easydsp.com/

easyDSP help

 214

Cause : due to limited traffic size allowable per day, its access is temporarily blocked.

Shooting : please access the web site tomorrow.

10.2 C28x
Trouble shooting (TI C28x)

Trouble : when SCI-A GPIO port recommended by easyDSP could not

be usable

To use RAM booting and flash programming with easyDSP, easyDSP should be connected to the

designated SCI-A and GPIO port.

In case only monitoring is used with easyDSP, easyDSP can be connected to any SCI and any GPIO

port, but you have to modify the easyDSP source file accordingly.

To use RAM booting and flash programming with easyDSP, but with other GPIO port than designated,

please refer to the help file 'How to use other SCI port than designated'.

It's about how to use designated SCI-A port during RAM booting or flash programming, and then use

other SCI port than designated during monitoring.

Trouble : 'section not aligned' message in flashrom dialog

Shooting : easyDSP uses TI's flash API to access onchip flashrom. TI flash API of Gen.3 MCU (ex.

F2807x, F28002x, F28004x, F2837x, F2738x) requires section alignment on the address (min. 4 words

boundary or recommended 8 words boundary) depending on MCU. That is, the start address of the

section should be either 0x*0, 0x*4, 0x*8 or 0x*C for C28x core and either 0x*0 or 0x*8 for Arm

Cortex-M4 (ex, F2838x CM). In the picture above, the error is caused since the start address of the

section is 0x*2.To avoid this problem, please align all sections linked to flash on a minimum 64-bit

boundary in the linker command file for your code project. As shown below linker command file from TI,

it is already applied as recommended value for default sections but you need to do it yourself for your

own section.

If the program continues even after above measure, please check your map file (*.map) and identify

which section makes error (the section starting from the address 0x080002 in the picture) and apply

section specific measures.

easyDSP help

 215

<in case of TMS320F280049>

<in case of TMS320F28388 CPU1 and CPU2 >

easyDSP help

 216

<in case of TMS320F28388 CM>

Trouble : 'The address xxx is not flash area !' error message when

entering to flash dialog

Cause : Flash programming is not feasible since the initialized section is located at RAM. Particularly in

the case that initial value of user variable in CLA program is set.

Shooting : Please refer to below manual capture. In case the initial value is needed, write the variable

with the value in the main() or other C28x code.

Trouble : Booting is successful but verifying is not from the address

0 due to MCU reading failure

easyDSP help

 217

Verifying is done by the easyDSP communication with MCU. So, any reason to block the communication

could cause this problem.

cause-1 : The source files easyDSP provides for its communication is not included in the project

Shooting-1 : please include them in the project and modify main.c file accordingly. Please refer to the

help file.

cause-2 : user program sets the GPIO easyDSP is using improperly.

Shooting-2 : please remove the GPIO seeting from your program.

cause-3 : enough time resource is not allocated to easyDSP communication

Shooting-3 : For example, if ePWM interrupt has high frequency, please reduce it.

Trouble : compile error of easyDSP source file /w controlSUITE

cause : controlSUITE has the different register naming from C2000Ware

Shooting : please use the latest TI source file (C2000Ware)

Trouble : MCU is working improperly when using a large number of

variables or big size array

cause : bug of TI source file

Shooting : please use the latest TI source file (C2000Ware)

 Trouble : F2838x is not working with easyDSP

Shooting : In case your board has 20Mhz clock and your source file is based on

C2000Ware_3_02_00_00 (or upward), please predefine USE_20MHZ_XTAL so that TI source files can

be compiled based on 20MHz. Please check below excerpt from TI's C2000Ware_3_02_00_00 release

note.

easyDSP help

 218

Trouble: Warning message as below before RAM booting is started

Shooting : change your cmd file so that your code is not overlapped with the reserved RAM memory

for bootrom.

For example, 28377D has the reserved RAM memory for bootrom operation as shown in the table below

(Excerpt from Technical Reference Manual (Literature Number: SPRUHM8I, Revised September 2019)).

In case your code is overlapped with this area, easyDSP detects it and shows warning message.

Trouble: RAM booting failed with message box below

Shooting : RAM booting is failed since program memory is allocated to flash area, not ram area. The

address shown in the box (ex, 0x33D0FE) belongs to flash. Please change your link file to allocate all

the memory to ram area and try again.

Trouble: Auto bauding failed

Shooting :

Mainly due to wrong hardware connection between easyDSP and your MCU board.

Step 1 : please check if your connection is correct. Hope you find misconnection in this step. Or, move

to step 2.

Step 2 : please check the waveforms of easyDSP pins during booting. Also refer to the below sequence

of easyDSP pin status.

 In case /RESET of easyDSP is NOT directly connected to reset pin of DSP, please check reset

pin status of DSP pin together.

 Step 2-1 : please check if /BOOT is low when /RESET is changed from low to high.

 In case power monitoring IC (TPSxxxx) is used to generate /XRS signal and /RESET is an

input to the IC,

 some cases it happens that /XRS becomes high after /BOOT is high, which will make

booting failure.

 Step 2-2 : please check RX and TX. After /BOOT pins are released high, 0x41 is sent from PC

to MCU via RX.

 Bauding bps could be different by MCU type and booting speed option.

 Then MCU send 0x41 at the detected bps (ex. 38400bps here). Please check the

waveforms and see what is missing in your board.

easyDSP help

 219

Trouble : compilation failed with below error message

 undefined first referenced

 symbol in file

 --------- ----------------

 LL$$OR C:\\tidcs\\c28\\DSP2833x\\Project\\Debug\\easy2833x_sci_v7.3.obj

 ULL$$CMP C:\\tidcs\\c28\\DSP2833x\\Project\\Debug\\easy2833x_sci_v7.3.obj

error: unresolved symbols remain

error: errors encountered during linking; "./Debug/inverter.out" not built

>> Compilation failure

Shooting : The TMS320C28x does not directly support some C/C++ integer operations. Evaluating

these operations is done with calls to run-time-support routines. These routines are hard-coded in

assembly language. They are members of the object and source run-time-support libraries.

"ULL$$CMP" = unsigned long long comparison

"LL$$OR" = long long oring

Therefore, please include run-time library at compiling.

Trouble : Type of all variables are displayed as 'int'

Shooting: Please use the latest easyDSP version and set the proper debugging model (either coff or

dwarf) in the project setting.

10.3 STM32
Trouble shooting (ST STM32)

Trouble: below error message from FlashROM or RAM booting dialog

Shooting : place your code to flash area for flash dialog operation. And place your code to RAM area for

RAM booting dialog operation.

easyDSP help

 220

Trouble: Failed to enter bootloader mode

Shooting :

Mainly due to wrong hardware connection between easyDSP and your MCU board.

Step 1 : please check if your connection is correct. Hope you find misconnection in this step. Or, move

to step 2.

Step 2 : please check the waveforms of easyDSP pins during booting. Also refer to the below sequence

of easyDSP pin status.

 In case /RESET of easyDSP is NOT directly connected to reset pin of MCU, please check reset

pin status of DSP pin directly.

 Step 2-1 : please check if BOOT pin is high when /RESET pin is changed from low to high.

 In case power monitoring IC (TPSxxxx) is used to generate NRST signal and /RESET is an

input to the IC,

 it could happen that NRST becomes high after BOOT is low, which will make booting

failure.

 Step 2-2 : please check RX and TX. After BOOT pin is low, 0x7F (even parity) is sent from PC

easyDSP help

 221

to MCU via RX.

 Bauding bps could be either 115200bps or 57600bps or other value depending of MCU

type.

 Then MCU send 0x79 (even parity) to PC at the detected bps. With this handshake, bps of

each side (easyDSP and MCU) are aligned.

 In case you can't observe 0x79 at all, please modify the option byte accordingly.

11. Tips

11.1 DA converter

If your MCU board has DA converter, you can monitor the variables on the oscilloscope by outputing

them via DA converter. It is very helpful in debugging your program. In this tip, it is explained how you

can change the content of DA converter (that is, variable to display) easily in real time.

Step 1 : Modify da.h file

easyDSP supports c source file and its header file (da.c and da.h) for dac control. File da.h is like below.

// File name : da.c

// function : DA output control

// variable explanation(#=1,2,3,4)

// da# : address of variable

// da#_type = 0 ; the variable is float

// = 1 ; the variable is integer

// da#_mid : mid value

// da#_rng : da scale

// use this routine in EasyDSP as below

// da1=&var_float

// da1_type=0

// da1_mid=0.

// da1_rng=20

// da2 = &var_int

// da2_type = 1

// da2_mid= 0.

// da2_rng = 20

easyDSP help

 222

#ifndef _DA_EasyDSP

#define _DA_EasyDSP

// you should specify the da address of your own

#define DA1_ADDR (*(int *)0X03C000e)

#define DA2_ADDR (*(int *)0X03C000d)

#define DA3_ADDR (*(int *)0X03C000b)

#define DA4_ADDR (*(int *)0X03C0007)

#define

extern unsigned int da1, da2, da3, da4, da1_type, da2_type, da3_type, da4_type;

extern float da1_rng, da1_val, da1_mid;

extern float da2_rng, da2_val, da2_mid;

extern float da3_rng, da3_val, da3_mid;

extern float da4_rng, da4_val, da4_mid;

// Notice : If you need faster DA output, please replace 'divide' part

// in the macro with 'multiply' accordingly.

// 12 bit DA

#define DA12(num) \

da##num##_val = (da##num##_type == 0 ? *(float *)da##num : (float)(*(int *)da##num)) ; \

DA##num##_ADDR = (int)((da##num##_val-da##num##_mid)* 0x7ff/da##num##_rng) +

0x800 ;

// 8 bit DA

#define DA8(num) \

da##num##_val = (da##num##_type == 0 ? *(float *)da##num : (float)(*(int *)da##num)) ; \

DA##num##_ADDR = (int)((da##num##_val-da##num##_mid)*0x7f/da##num##_rng) + 0x80 ;

#endif

At first, the address of da converter on your board should be defined correctly in the DA#_ADDR define

lines(#=1,2,3,4). And then, you should also modify the macro function for dac output considering the

feature of your dac's own. In above example code, 8 bit and 12bit dac with positive/negative output

dac are shown.

Note : divide operation in the macro may need long time to be executed. For faster da output, replace

it by the multiply operation.

Necessary variables are defined in the da.c file and their meanings are

da# = The address of variable which is output to DA channel #

da#_type = The type of variable. 1 = Integer, 0 = float

da#_rng = range of display

da#_mid = mid value of display

Step 2 : Modify your program

Make your MCU program contain the da.c and da.h you modified. And insert following macros where

you want dac output is made .Normally, the insertion place is in the timer interrupt routine for

repetitive output.

#include "da.h"

easyDSP help

 223

..........

DA12(1);

DA12(2);

DA12(3);

DA12(4);

.......

Step 3 : Use easyDSP

Finally, you can control the da converter in the command window or other windows as follows.

da1=&var_float

da1_type=0

da1_mid=0

da1_rng=20

da2 = &var_int

da2_type = 1

da2_mid= 0

da2_rng = 20

11.2 Others

only for MCU flash programming with easyDSP

In case you like MCU flash programming only without using various easyDSP communication features,

then please make a easyDSP project with the target output file (for example, *.out file), and go to

flashROM menu and program flash.

Insert new line in command window

Basically, enter-key input in command window means the running of current line command. To insert

new line without running command, two methods are supported. One is just clicking the tool bar of

new line . The other is 'Ctrl + Enter' key input.

Confirm your assignment command in command window

You can change variable value by assignment commands(=). And then confirm change by clicking the

right button of mouse. This action is equal to the tool bar of 'update' .

Save some information on the flashrom

Because easyDSP supports sector erase of flashrom, you can use some sectors of flashrom for booting

data and the other sectors for saving your system information.

11.3 FAQ
What's difference between easyDSP and Jtag/SWD debugger ?

easyDSP help

 224

They have different purpose. Debugger is useful when you develop hardware and software in the

beginning especially with breakpoint, step-in operation. But in some applications like motor drives, you

can't use this features when the system is running. So during system operation, you need to monitor

the variables in your code for system debugging. The variable monitoring with debugger has some

limits such as limited number of variables, monitoring speed. Even worse is under very noisy

environment (high current, high voltage switching) the debugger is sometimes disconnected. And for

mass production, the debugger accessibility is limited to protect IP.

On the other hand, easyDSP has very stable connection all the time since it communicates with MCU

with communication channel like SCI or UART.

When to use easyDSP, when to use debugger ?

Debugger is useful when you develop MCU board or its basic firmware. On the other hands, easyDSP is

useful when you develop/debugg a high-level system algorithm. By combining debugger and easyDSP,

the best debugging environment could be implemented.

How reliable is reading variable?

100% reliability is not guaranteed. easyDSP could read wrong value of variable.

How reliable is writing variable?

2 byte checksum is checked before writing to variable. So the probability of having incorrect writing is

extremely remote. But not 100% guaranteed.

How reliable is writing flash rom?

Flashrom is written by clicking 'Program' button. But nothing is checked and verified during writing

process. Therefore you should check it by yourself by clicking 'Verify' button afterwards.

Which value will be displayed if the reading operation fails ?

either '?' (ex, in watch window) or no display in plot and chart window.

Does easyDSP do compiling and linking C program?

No. They are done by compiler and linker provided by chip maker.

How many variables can I monitor using easyDSP?

As much as the resource of your PC, speed and memory are permitted.

12. Driver

12.1 Driver Installation

NOTE) 64bit Windows is mandatory !!

easyDSP uses FT2232 chip from FTDI as an USB controller IC. Therefore driver of easyDSP is same to

D2XX Direct Driver of FT2232.

You can get all drivers in http://www.ftdichip.com/Drivers/D2XX.htm, all installation guidance in

http://www.ftdichip.com/Documents/InstallGuides.htm.

Windows OS How to install driver

http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Documents/InstallGuides.htm

easyDSP help

 225

Windows 11

Windows 10

Windows 8.1

Windows 8

Windows 7

Just run the "CDM212364_Setup.exe" in "Driver" folder of easyDSP program

BEFORE connecting easyDSP pod into your PC. To install the latest driver file

always, please visit http://www.ftdichip.com/Drivers/D2XX.htm .

Please refer to the below links for detailed installation process.

Windows 10/11 Installation Guide

Windows 8 Installation Guide

Windows 7 Installation Guide

Windows Vista

Windows XP

Not included in the installation files but you can download it

Drivers : http://www.ftdichip.com/Drivers/CDM/CDM20824_Setup.exe

Installation process :

Windows Vista Installation Guide

Windows XP Installation Guide

Since easyDSP uses FT2232 USB controller chip from FTDI, you can refer to the latest driver file (D2XX

direct driver) and its installation guideline from FTDI.

http://www.ftdichip.com/Drivers/D2XX.htm

http://www.ftdichip.com/Documents/InstallGuides.htm

After the driver is well installed, you will find USB Serial Converter A/B in the device manager once the

easyDSP pod is connected to PC.

12.2 Driver Uninstallation
In case general Windows way of driver removal is not successful, CDM Uninstaller can be used. CDM

Uninstaller is a free application that can selectively remove Windows device drivers from the user’s

system as specified by the device Vendor ID and Product ID. This application comes as a command

driven application or as a GUI executable.

The readme for the GUI version can be viewed here. Please refer to the readme for running the

http://www.ftdichip.com/Drivers/D2XX.htm
https://ftdichip.com/wp-content/uploads/2022/05/AN_396-FTDI-Drivers-Installation-Guide-for-Windows-10_11.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_234_FTDI_Drivers_Installation_Guide_for_Windows_8.pdf
http://www.ftdichip.com/Documents/AppNotes/AN_119_FTDI_Drivers_Installation_Guide_for_Windows7.pdf
http://www.ftdichip.com/Drivers/CDM/CDM20824_Setup.exe
http://www.ftdichip.com/Documents/AppNotes/AN_103_FTDI_Drivers_Installation_Guide_for_VISTA(FT_000080).pdf
http://www.ftdichip.com/Documents/AppNotes/AN_104_FTDI_Drivers_Installation_Guide_for_WindowsXP(FT_000093).pdf
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Documents/InstallGuides.htm
https://www.ftdichip.com/Support/Utilities/CDM_Uninst_GUI_Readme.html

easyDSP help

 226

application.

Both applications come as a zipped executable that needs to be extracted prior to running.

Download CDM Uninstaller (command line version + GUI version)

Major process is to add Vendor/Product ID and click 'Remove Devices'.

https://www.ftdichip.com/Support/Utilities/CDMUninstaller_v1.4.zip

	1. easyDSP ?
	2. Products type
	3. starting easyDSP
	4. Revision History
	5. Limitation
	6. Pod configuration
	7. How to use MCU
	7.1 C28x
	7.1.1 C28x programming
	7.1.1.1 common
	7.1.1.2 multi cores
	7.1.1.3 using BitField
	7.1.1.4 using DriverLib
	7.1.1.5 F2837xD and F28P65xD usage
	7.1.1.6 F2838x usage

	7.1.2 C28x board setting
	7.1.2.1 F28P65x
	7.1.2.2 F2838x
	7.1.2.3 F2837xS/2807x
	7.1.2.4 F2837xD
	7.1.2.5 F28P55x/F28001x/28002x/28003x/28004x
	7.1.2.6 F2823x/2833x
	7.1.2.7 C2834x
	7.1.2.8 F2802x/2802x0/2803x/2805x/2806x
	7.1.2.9 F281x
	7.1.2.10 F280x

	7.1.3 How to use other SCI port than designated
	7.1.4 C28x cautions

	7.2 STM32
	7.2.1 STM32 programming
	7.2.2 STM32 hardware
	7.2.3 STM32 dual core
	7.2.4 STM32 RAM booting
	7.2.5 STM32 cautions

	7.3 S32
	7.3.1 S32K1 + SDK
	7.3.2 S32K/S32M + RTD

	7.4 AM263x
	7.4.1 AM263x software
	7.4.2 AM263x hardware

	7.5 TM4C
	7.6 MSPM0
	7.7 PSoC4
	7.7.1 PSoC4 software
	7.7.2 PSoC4 hardware

	7.8 XMC1
	7.9 XMC4
	7.10 RA
	7.10.1 RA hardware
	7.10.2 RA sofrware
	7.10.3 RA0

	7.11 RX
	7.11.1 RX hardware
	7.11.2 RX sofrware

	7.12 TX
	7.13 TXZ3
	7.14 LPC
	7.15 Cautions

	8. Menus
	8.1 Project
	8.2 Edit
	8.3 MCU
	8.3.1 Common
	8.3.2 C28x
	8.3.3 STM32
	8.3.4 S32
	8.3.5 AM263x
	8.3.6 TM4C
	8.3.7 MSPM0
	8.3.8 PSoC4
	8.3.9 XMC1
	8.3.10 XMC4
	8.3.11 RA
	8.3.12 RX
	8.3.13 TX, TXZ3
	8.3.14 LPC

	8.4 Tools
	8.5 Window
	8.6 Help

	9. Windows
	9.1 Command
	9.2 Watch
	9.3 Plot
	9.4 Chart
	9.5 Record
	9.6 Memory
	9.7 Array
	9.8 Tree

	10. Trouble Shooting
	10.1 Common
	10.2 C28x
	10.3 STM32

	11. Tips
	11.1 DA converter
	11.2 Others
	11.3 FAQ

	12. Driver
	12.1 Driver Installation
	12.2 Driver Uninstallation

